Шунгит – природный источник наноразмерного восстановленного оксида графена

Елена Федоровна Шека, Наталья Николаевна Рожкова, Elena Sheka, Natalia Rozhkova

Аннотация


Предлагается рассматривать шунгитовый углерод (шунгит) как природный аллотроп углерода многоуровневой фрактальной структуры, образующийся в результате последовательной агрегации нанолистов ~1 нм восстановленного оксида графена. Турбостратные стопки листов ~1,5 нм толщиной и ~2,5 нм шириной и глобулярная композиция стопок со средним линейным размером ~6 нм определяют вторичные и третичные уровни структуры. Агрегаты глобул размером десятки нанометров завершают структуру. Молекулярная теория оксида графена и эмпирические знания, полученные современной наукой о графене, легли в основу предлагаемого нового видения шунгита. Микроскопическое представление структурной организации шунгитового углерода нашло убедительное подтверждение при анализе эмпирических данных, полученных с использованием квантово-химического моделирования. Впервые продукт геологического процесса описывается на квантовом уровне.


Ключевые слова


наноуглерод; шунгит; восстановленный оксид графена; молекулярная теория графена

Полный текст:

PDF

Литература


Голубев А. И., Ромашкин А. Е., Рычанчик Д. В. Связь углеродонакопления с основным вулканизмом в палеопротерозое Карелии (ятулийско-людиковийский переход) // Геология и полезные ископаемые Карелии. 2010. Вып. 13. С. 3–79.

Горюнов А. С., Борисова А. Г., Колодей В. А., Рожков С. П. Спектроскопия комбинационного рас-сеяния биоконъюгатов сывороточного альбумина и шунгитового наноуглерода // Труды КарНЦ РАН. Сер. Экспериментальная биология. 2012. № 2. С. 154–158.

Ивановский А. Л. Графеновые и графеноподобные материалы // Успехи химии. 2012. Т. 81, вып. 7. С. 571–605.

Каманина Н. В., Серов С. В., Шурпо Н. А., Рожкова Н. Н. Светоиндуцированное изменение показате¬ля преломления в наноструктурированных полиим¬идных системах с шунгитами // Письма в ЖТФ. 2011. T. 37, вып. 20. C. 16–22.

Ковалевский В. В. Структурное состояние шунгитового углерода // Ж. неорг. хим. 1994. Т. 39, № 1. С. 31–35.

Рожков C. П., Рожкова Н. Н., Суханова Г. А. и др. Взаимодействие углеродных наночастиц с белко-выми молекулами по данным ДСК // Наночастицы в конденсированных средах: сб. научных статей / Ред. П. А. Витязь. Минск: БГУ. 2008. С. 134–139.

Рожкова Н. Н., Емельянова Г. И., Горленко Л. Е., Лунин В. В. Шунгит и его модифицирование // ЖВХО им. . . Менделеева. 2004. Т. XLVIII, № 5. C. 107–115.

Рожкова Н. Н., Емельянова Г. И., Горленко Л. Е. и др. От устойчивой водной дисперсии наночастиц углерода к кластерам метастабильного углерода шунгитов // Физика и химия стекла. 2011. Т. 37, № 6. С. 853–859.

Рожкова Н. Н. Наноуглерод шунгитов. Петрозаводск: КарНЦ РАН, 2011. 100 с.

Рожкова Н. Н. Агрегация и стабилизация наночастиц углерода шунгитов // Экологическая химия. 2012. № 4. С. 240–251.

Филиппов М. М. Шунгитоносные породы Онежской структуры. Петрозаводск: КарНЦ РАН, 2002. 280 c.

Холодкевич С. В., Поборчий В. В. Спектры КРС и природа повышенной стабильности естественного стеклоуглерода и шунгитов // Письма в ЖТФ. 1994. Т. 20, вып. 3. С. 22–25.

Шмидт Ф. К. Фракталы в физической химии гетерогенных систем и процессов. Иркутск: Иркутский университет, 2000. 147 с.

Acik M., Mattevi C., Gong C. et al. The role of intercalated water in multilayered graphene oxide // ACS Nano. 2010. Vol. 4. P. 5861–5868.

Amara A. B. H. X-ray diffraction, infrared and TGA/ DTG analysis of hydrated nacrite // Clay Minerals. 1997. Vol. 32. P. 463–470.

Avdeev M. V., Tropin T. V., Aksenov V. L. et al. Pore structures in shungites as revealed by small-angle neutron scattering // Carbon. 2006. Vol. 44. P. 54–961.

Belousova I. M., Videnichev D. A., Kislyakov I. M. et al. Comparative studies of optical limiting in fullerene and shungite nanocarbon aqueous dispersions // Optical Materials Express. 2015. Vol. 5, nо. 1. P. 169–175.

Bianco A., Cheng H.-M., Enoki T. et al. All in the graphene family a recommended nomenclature for two-dimensional carbon materials // Carbon. 2013. Vol. 65. P. 1–6.

Buchsteiner A., Lerf A., Pieper J. Water dynamics in graphite oxide investigated with neutron scattering // J. Phys. Chem. B. 2006. Vol. 110. P. 22328–22338.

Buseck P. R., Galdobina L. P., Kovalevski V. V. et al. Shungites: the C-rich rocks of Karelia, Russia // Canadian Mineralogist. 1997. Vol. 35, nо. 6. P. 1363–78.

Chen W., Zhu Z., Li S., Chen C., Yan L. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries // Nanoscale. 2012. Vol. 4. P. 2124–2129.

Diessel C. F. K., Offler R. Change in physical properties of coalified and graphitized phytoclasts with grade of metamorphism // Neues. Jahrb. Mineral Monatsh H. 1975. Vol. 1. P. 11–26.

Dimiev A. M., Alemany L. B., Tour J. M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model // ACS Nano. 2013. Vol. . P. 576–584.

Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. The chemistry of graphene oxide // Chem. Soc. Rev. 2010. Vol. 39. P. 228–240.

Elias D. C., Nair R. R., Mohiuddin T. M. G. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphene // Science. 2009. Vol. 323. P. 610–613.

Gouyet J.-F. Physics and Fractal Structures. Paris; New York: Masson Springer, 1996.

Hoffmann R. Small but strong lessons from chemistry for nanoscience // Ang. Chem. Int. Ed. 2013. Vol. 52. P. 3–103.

Hui W., Yun H. H. Effect of oxygen content on structures of graphite oxides // Ind. Eng. Chem. Res. 2011. Vol. 50. P. 6132–6137.

Kamanina N. V., Serov S. V., Shurpo N. A. et al. Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications // J. Mater. Sci.: Mater. Electron. 2012. Vol. 23. P. 1538–1542.

Kovalevski V. V., Rozhkova N. N., Zaidenberg A. Z., Yermolin A. N. Fullerene-like structures in shungite and their physical properties // Mol. Mat. 1994. Vol. 4. P. 80.

Kuila T., Bose S., Mishra A. K. et al. Chemical functionalization of graphene and its applications // Prog. Mat. Sci. 2012. Vol. 57. P. 1061–1105.

Kwiecińskaa B., Petersen H. I. Graphite, semi-graphite, natural coke, and natural char classification – ICCP system // Int. J. Coal. Geol. 2004. Vol. 57. P. –116.

Landis C. A. Graphitization of dispersed carbonaceous material in metamorphic rocks // Contrib. Mineral Petrol. 1971. Vol. 30. P. 34–45.

Li L., Wu G., Yang G. et al. Focusing on luminescent grapheme quantum dots: current status and future perspectives // Nanoscale. 2013. Vol. 5. P. 4015–4039.

Liao K.-H., Mittal A., Bose S. et al. Aqueous only route toward graphene from graphite oxide // ACS Nano. 2011. Vol. 5. P. 1253–1258.

Melezhik V. A., Fallick A. E., Filippov M. M. et al. Petroleum surface oil seeps from a Paleoproterozoic petrified giant oilfield // Terra Nova. 2009. Vol. 21. P. 119–126.

Natkaniec I., Sheka E. F., Drużbicki K. et al. IINS and DFT studies of vibrational spectra of water retained in graphene oxide // Abstracts of DMM-II. University of Glasgow. 2013. P. 31.

Pan S., Aksay I. A. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route // ACS Nano. 2011. Vol. 5. P. 4073–4083.

Pimental M. A., Dresselhaus G., Dresselhaus M. S. et al. Studying disorder in graphite-based systems by Raman spectroscopy // Phys. Chem. Chem. Phys. 2007. Vol. . P. 1276–1290.

Razbirin B. S., Rozhkova N. N., Sheka E. F. et al. Fractals of graphene quantum dots in photolumines-cence of shungite // ЖЭТФ. 2014. Vol. 145. P. 838–850.

Rozhkov S. P., Sukhanova G. A., Borisova A. G. et al. Effects of carbon nanoparticles on protein thermostability revealed by DSC and ESR spin-labelling methods // Ann. World Conf. Carbon Biarritz, France, 2009. Р. 201.

Rozhkova N. N., Gribanov A. V., Khodorkovskii M. A. Water mediated modification of structure and physical chemical properties of nanocarbons // Diamond Relat. Mater. 2007. Vol. 16. P. 2104–2108.

Rozhkova N. N., Gorlenko L. E., Emel’yanova G. I. et al. The effect of ozone on the structure and physico-chemical properties of ultradisperse diamond and shungite nanocarbon elements // Pure Appl. Chem. 2009. Vol. 81. P. 2093–2105.

Rozhkova N. N., Emel’yanova G. I., Gorlenko L. E. et al. Structural and physico-chemical characteristics of shungite nanocarbon as revealed through modification // Smart Nanocomposites. 2010. Vol. 1. P. 1–90.

Sheka E. F., Chernozatonskii L. A. Chemical reactiv¬ity and magnetism of graphene // Int. J. Quant. Chem. 2010. Vol. 110. P. 1938–1946.

Sheka E. F. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. CRC Press, Taylor and Francis Group, Boca Raton, FL, 2011. 313 р.

Sheka E. F. Computational strategy for graphene: Insight from odd electrons correlation // Int. J. Quant. Chem. 2012. Vol. 112. P. 3076–3090.

Sheka E. F., Popova N. A. Odd-electron molecular theory of the graphene hydrogenation // J. Mol. Mod. 2012. Vol. 18. P. 3751–3768.

Sheka E. F., Popova N. A. Molecular theory of graphene oxide // Phys. Chem. Chem. Phys. 2013. Vol. 15. P. 13304–13322.

Sheka E. F. Molecular theory of graphene chemical modification. arXiv:1406.1703v1 [cond-mat. mtrl-sci] 2014.

Sheka E. F., Rozhkova N. N. Shungite as the natural pantry of nanoscale reduced raphene oxide // Int. Journ. Smart Nano Mat. 2014. Vol. 5. P. 1–16

Sheka E. F., Rozhkova N. N., Natkaniec I., Holderna-Natkaniec K. Inelastic neutron scattering study of reduced graphene oxide of natural origin // Письма ЖЭТФ. 2014а. Vol. . P. 54–759.

Sheka E. F., Rozhkova N. N., Holderna-Natkaniec K., Natkaniec I. Nanoscale reduced-graphene-oxide origin of shungite in light of neutron scattering // Nanosystems: Phys. Chem. Math. 2014б. Vol. 5, nо. 5. P. 659–676.

Singh V., Joung D., Zhai L. et al. Graphene based materials: Past, present and future // Prog. Mat. Sci. 2011. Vol. 56. P. 1178–1271.

Zhu Y., Murali S., Cai W. et al. Graphene and graphene oxide: Synthesis, properties, and applications // Adv. Mater. 2010. Vol. 22. P. 3906–3924.

REFERENCES IN ENGLISH

Filippov M. M. Shungitonosnye porody Onezhskoi struktury [Shungite-bearing rocks of the Onega struc¬ture]. Petrozavodsk: KarRC of RAS, 2002. 280 p.

Golubev A. I., Romashkin A. E., Rychanchik D. V. Svyaz’ uglerodonakopleniya s osnovnym vulkanizmom v paleoproterozoe Karelii (yatuliisko-lyudikoviiskii perekhod) [Relation of carbon accumulation to Palaeoproterozoic basic volcanism in Karelia (Jatulian-Ludicovian transition)]. Geologiya i poleznye iskopaemye Karelii [Geology and useful minerals of Karelia]. 2010. Iss. 13. P. 3–79.

Goryunov A. S., Borisova A. G., Kolodei V. A., Rozhkov S. P. Spektroskopiya kombinatsionnogo rasseyaniya biokon’yugatov syvorotochnogo al’bumina i shungito¬vogo nanougleroda [Raman spectroscopy of bioconjugates of bovine serum albumin and shungite nanocarbon]. Trudy KarNTs RAN [Transactions of KarRC of RAS]. 2012. No. 2. P. 154–158.

Ivanovskii A. L. Grafenovye i grafenopodobnye materialy [Graphene and graphene-like materials]. Uspekhi khimii [Russian Chemical Reviews]. 2012. Vol. 81, iss. . P. 571–605.

Kamanina N. V., Serov S. V., Shurpo N. A., Rozhkova N. N. Svetoindutsirovannoe izmenenie pokazatelya prelomleniya v nanostrukturirovannykh poliimidnykh sistemakh s shungitami [Photoinduced changes in refractive index of nanostructured shungite-containing polymide systems]. Pis’ma v ZhTF [Technical Physics Letters]. 2011. Vol. 37, iss. 20. P. 16–22.

Kholodkevich S. V., Poborchii V. V. Spektry KRS i priroda povyshennoi stabil’nosti estestvennogo steklougleroda i shungitov [Raman spectra and enhanced stability of natural glassy carbon of shungites]. Pis’ma v ZhTF [Technical Physics Letters]. 1994. Vol. 20, iss. 3. P. 22–25.

Kovalevskii V. V. Strukturnoe sostoyanie shungitovogo ugleroda [Structural state of carbon in shungite]. Zh. neorg. khim. [Russ. J. Inorg. Chem.]. 1994. Vol. 39, no. 1. P. 31–35.

Rozhkov C. P., Rozhkova N. N., Sukhanova G. A., Borisova A. G., Goryunov A. S. Vzaimodeistvie uglerod¬nykh nanochastits s belkovymi molekulami po dannym DSK [DSC data on interaction of carbon nanoparticles with protein molecules]. Nanochastitsy v kondensirovannykh sredakh: sb. nauchnykh statei [Nanoparticles in condensed media. Collect. sci. papers]. Ed. P. A. Vityaz’. Minsk: BGU, 2008. P. 134–139.

Rozhkova N. N., Emel’yanova G. I., Gorlenko L. E., Lunin V. V. Shungit i ego modifitsirovanie [Shungite and its modification]. ZhVKhO im. D. I. Mendeleeva [Mendeleev Chem. J.]. 2004. Vol. XLVIII, no. 5. P. 107–115.

Rozhkova N. N., Emel’yanova G. I., Gorlenko L. E., Gribanov A. V., Lunin V. V. Ot ustoichivoi vodnoi dispersii nanochastits ugleroda k klasteram metastabil’nogo ugleroda shungitov [From stable aqueous dispersion of carbon nanoparticles to the clus¬ters of metastable shungite carbon]. Fizika i khimiya stekla [Glass Physics and Chemistry]. 2011. Vol. 37, no. 6. P. 853–859.

Rozhkova N. N. Nanouglerod shungitov [The nanocarbon of shungites]. Petrozavodsk: KarRC of RAS, 2011. 100 p.

Rozhkova N. N. Agregatsiya i stabilizatsiya nanochastits ugleroda shungitov [Aggregation and stabiliza-tion of shungite carbon nanoparticles]. Ekologicheskaya khimiya [Ecological Chemistry]. 2012. No. 4. P. 240–251.

Shmidt F. K. Fraktaly v fizicheskoi khimii geterogennykh sistem i protsessov [Fractals in the physical chemistry of heterogeneous systems and processes]. Irkutsk: Irkutskii universitet, 2000. 147 p.

Acik M., Mattevi C., Gong C., Lee G., Cho K., Chhowalla M., Chabal Y. J. The role ofintercalated water in multilayered graphene oxide. ACS Nano. 2010. Vol. 4. P. 5861–5868.

Amara A. B. H. X-ray diffraction, infrared and TGA/ DTG analysis of hydrated nacrite. Clay Minerals. 1997. Vol. 32. P. 463–470.

Avdeev M. V., Tropin T. V., Aksenov V. L., Rosta L., Garamus V. M., Rozhkova N. N. Pore structures in shungites as revealed by small-angle neutron scattering. Carbon. 2006. Vol. 44. P. 54–961.

Belousova I. M., Videnichev D. A., Kislyakov I. M., Krisko T. K., Rozhkova N. N., Rozhkov S. S. Comparative studies of optical limiting in fullerene and shungite nano¬carbon aqueous dispersions. Optical Materials Express. 2015. Vol. 5, nо. 1. P. 169–175.

Bianco A., Cheng H.-M., Enoki T., Yu G., Hurt R. H., Koratkar N. All in the graphene family a recommended nomenclature for two-dimensional carbon materials. Carbon. 2013. Vol. 65. P. 1–6.

Buchsteiner A., Lerf A., Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B. 2006. Vol. 110. P. 22328–22338.

Buseck P. R., Galdobina L. P., Kovalevski V. V., Rozhkova N. N., Valley J. W., Zaidenberg A. Z. Shungites: the C-rich rocks of Karelia, Russia. Canadian Mineralogist. 1997. Vol. 35, nо. 6. P. 1363–78.

Chen W., Zhu Z., Li S., Chen C., Yan L. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries. Nanoscale. 2012. Vol. 4. P. 2124–2129.

Diessel C. F. K., Offler R. Change in physical properties of coalified and graphitized phytoclasts with grade of metamorphism. Neues. Jahrb. Mineral Monatsh H. 1975. Vol. 1. P. 11–26.

Dimiev A. M., Alemany L. B., Tour J. M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano. 2013. Vol. . P. 576–584.

Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010. Vol. 39. P. 228–240.

Elias D. C., Nair R. R., Mohiuddin T. M. G., Moro¬zov S. V., Blake P., Halsall M. P., Ferrari A. C., Boukhvalov D. W., Katsnelson M. I., Geim A. K., Novoselov K. S. Control of graphene’s properties by reversible hydrogenation: Evidence for grapheme. Science. 2009. Vol. 323. P. 610–613.

Gouyet J.-F. Physics and Fractal Structures. Paris; New York: Masson Springer, 1996.

Hoffmann R. Small but strong lessons from chemistry for nanoscience. Ang. Chem. Int. Ed. 2013. Vol. 52. P. 3–103.

Hui W., Yun H. H. Effect of oxygen content on structures of graphite oxides. Ind. Eng. Chem. Res. 2011. Vol. 50. P. 6132–6137.

Kamanina N. V., Serov S. V., Shurpo N. A., Likhomanova S. V., Timonin D. N., Kuzhakov P. V., Rozhkova N. N., Kityk I. V., Plucinski K. J., Uskokovic D. P. Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J. Mater. Sci.: Mater. Electron. 2012. Vol. 23. P. 1538–1542.

Kovalevski V. V., Rozhkova N. N., Zaidenberg A. Z., Yermolin A. N. Fullerene-like structures in shungite and their physical properties. Mol. Mat. 1994. Vol. 4. P. –80.

Kuila T., Bose S., Mishra A. K., Khanra P., Kim N. H., Lee J. H. Chemical functionalization of graphene and its applications. Prog. Mat. Sci. 2012. Vol. 57. P. 1061–1105.

Kwiecińskaa B., Petersen H. I. Graphite, semi-graphite, natural coke, and natural char classification – ICCP system. Int. J. Coal. Geol. 2004. Vol. 57. P. –116.

Landis C. A. Graphitization of dispersed carbonaceous material in metamorphic rocks. Contrib. Mineral Petrol. 1971. Vol. 30. P. 34–45.

Li L., Wu G., Yang G., Peng J., Zhao J., Zhu J.-J. Focusing on luminescent grapheme quantum dots: current status and future perspectives. Nanoscale. 2013. Vol. 5. P. 4015–4039.

Liao K.-H., Mittal A., Bose S., Leighton C., Mkhoyan K. A., Macosko C. W. Aqueous only route toward graphene from graphite oxide. ACS Nano. 2011. Vol. 5. P. 1253–1258.

Melezhik V. A., Fallick A. E., Filippov M. M., Lepland A., Rychanchik D. V., Deines Y. E., Medvedev P. V., Romashkin A. E., Strauss H. Petroleum surface oil seeps from a Paleoproterozoic petrified giant oilfield. Terra Nova. 2009. Vol. 21. P. 119–126.

Natkaniec I., Sheka E. F., Drużbicki K., Hołderna- Natkaniec K., Gubin S. P., Buslaeva E. Yu., Tkachev S. V. IINS and DFT studies of vibrational spectra of water retained in graphene oxide. Abstracts of DMM-II. University of Glasgow. 2013. P. 31.

Pan S., Aksay I. A. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano. 2011. Vol. 5. P. 4073–4083.

Pimental M. A., Dresselhaus G., Dresselhaus M. S., Cancado L. A., Jorio A., Sato R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007. Vol. . P. 1276–1290.

Razbirin B. S., Rozhkova N. N., Sheka E. F., Nelson D. K., Starukhin A. N. Fractals of graphene quantum dots in photoluminescence of shungite. ZhETF. 2014. Vol. 145. P. 838–850.

Rozhkov S. P., Sukhanova G. A., Borisova A. G., Rozhkova N. N., Goryunov A. S. Effects of carbon nanoparticles on protein thermostability revealed by DSC and ESR spin-labelling methods. Ann. World Conf. Carbon Biarritz, France, 2009. Р. 201.

Rozhkova N. N., Gribanov A. V., Khodorkovskii M. A. Water mediated modification of structure and physical chemical properties of nanocarbons. Diamond Relat. Mater. 2007. Vol. 16. P. 2104–2108.

Rozhkova N. N., Gorlenko L. E., Emel’yanova G. I., Korobov M. V., Lunin V. V., Osawa E. The effect of ozone on the structure and physico-chemical properties of ultradisperse diamond and shungite nanocarbon elements. Pure Appl. Chem. 2009. Vol. 81. P. 2093–2105.

Rozhkova N. N., Emel’yanova G. I., Gorlenko L. E., Jankowska A., Korobov M. V., Lunin V. V. Structural and physico-chemical characteristics of shungite nanocarbon as revealed through modification. Smart Nanocomposites. 2010. Vol. 1. P. 1–90.

Sheka E. F., Chernozatonskii L. A. Chemical reactivity and magnetism of grapheme. Int. J. Quant. Chem. 2010. Vol. 110. P. 1938–1946.

Sheka E. F. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. CRC Press, Taylor and Francis Group, Boca Raton, FL, 2011. 313 p.

Sheka E. F. Computational strategy for graphene: Insight from odd electrons correlation. Int. J. Quant. Chem. 2012. Vol. 112. P. 3076–3090.

Sheka E. F., Popova N. A. Odd-electron molecular theory of the graphene hydrogenation. J. Mol. Mod. 2012. Vol. 18. P. 3751–3768.

Sheka E. F., Popova N. A. Molecular theory of graphene oxide. Phys. Chem. Chem. Phys. 2013. Vol. 15. P. 13304–13322.

Sheka E. F. Molecular theory of graphene chemical modification. arXiv:1406.1703v1 [cond-mat. mtrl-sci] 2014.

Sheka E. F., Rozhkova N. N. Shungite as the natural pantry of nanoscale reduced graphene oxide. Int. Journ. Smart Nano Mat. 2014. Vol. 5. P. 1–16.

Sheka E. F., Rozhkova N. N., Natkaniec I., Holderna- Natkaniec K. Inelastic neutron scattering study of re¬duced graphene oxide of natural origin. ZhETF. 2014а. Vol. . P. 54–759.

Sheka E. F., Rozhkova N. N., Holderna-Natkaniec K., Natkaniec I. Nanoscale reduced-graphene-oxide origin of shungite in light of neutron scattering. Nanosystems: Phys. Chem. Math. 2014b. Vol. 5, nо. 5. P. 659–676.

Singh V., Joung D., Zhai L., Das S., Khondaker S. I., Seal S. Graphene based materials: Past, present and future. Prog. Mat. Sci. 2011. Vol. 56. P. 1178–1271.

Zhu Y., Murali S., Cai W., Li X., Suk J. W., Potts J. R., Ruoff R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010. Vol. 22. P. 3906–3924.




DOI: http://dx.doi.org/10.17076/geo264

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019