Coupling general ocean circulation models with the BFM marine ecosystem model

Илья Александрович Чернов, Ilya A. Chernov

Аннотация


The coupling of numerical geophysical models of a sea with marine ecosystem models is considered. For the latter, BFM was chosen and coupled with three Russian models for three seas of different spatial scales: the White Sea (JASMINE), the Arctic Ocean (FEMAO), and the global ocean as a part of the Earth system (INMCM). We describe technical details of implementation and discuss important questions of the computing efficiency and sensitivity of the model to the sea-ice subsystem and boundary values. The ecology model can simultaneously embrace pelagic, benthic, and sympagic ecosystems.

Ключевые слова


numerical modeling; marine ecosystems; the White Sea; the Arctic; the World Ocean; ice biochemistry

Полный текст:

PDF

Литература


Piroddi Ch. et al Using ecological models to assess ecosystem status in support of the European Marine Strategy Framework Directive // Ecological Indicators 58 (2015) 175–191. DOI: 10.1016/j.ecolind.2015.05.037

Tedesco L., Piroddi Ch., K am ari M., Lynam Ch. Capabilities of Baltic Sea models to assess environmental status for marine biodiversity // Marine Policy (2016) pp. 1–12. DOI: 10.1016/j.marpol.2016.04.021

Саркисян А.С., Залесный В.Б., Дианский Н.А. и др. Математические модели циркуляции океанов и морей // в кн. Современные проблемы вычислительной математики и Математического моделирования. Т. 2. М.: Наука, 2005. С. 176–278.

Белое море и его водосбор под влиянием климатических и антропогенных факторов. Петрозаводск: КарНЦ РАН, 2007, 335 с.

N. Filatov, D. Pozdnyakov, O.M. Johannessen, L.H. Pettersson, and L.P. Bobylev. White Sea, its Marine Environment and Ecosystem Dynamics Influenced by Global Change. Springer-Praxis, London, 2005. DOI: 10.1007/3-540-27695-5

Волженский М.Н., Родионов А.А., Семенов Е.В., Филатов Н.Н., Зимин А.В., Булатов М.Б. Опыт верификации оперативной модели для мониторинга гидрофизических полей Белого моря // Фундаментальная и прикладная гидрофизика. 2009.No3. – СПб.: Наука, 2009. С.33–41.

Родионов А.А., Семенов Е.В., Зимин А.В. Развитие системы мониторинга и прогноза гидрофизических полей морской среды в интересах обеспечения скрытности и защиты кораблей ВМФ. Фундаментальная и прикладная гидрофизика, 2012, т. 5, No 2, с. 89–108.

Яковлев Н.Г. О воспроизведении полей температуры солености Северного Ледовитого океана // Известия РАН. Физика атмосферы и океана, 2012, том 48, No 1, с. 100–116.

Яковлев Н.Г. Воспроизведение крупномасштабного состояния вод и морского льда Северного Ледовитого океана в 1948–2002 гг. Часть 1:

численная модель и среднее состояние // Известия РАН. Физика атмосферы и океана. 2009. Т. 45. No 3, с. 1–16.

Яковлев Н.Г. Совместная модель общей циркуляции вод и эволюции морского льда в Северном Ледовитом океане // Известия РАН. Физика атмосферы и океана. 2003. Т. 39. No 3, с. 394–409.

Чернов И.А., Толстиков А.В., Яковлев Н.Г. Комплексная модель Белого моря: гидротермодинамика вод и морского льда // Труды КарНЦ РАН. Серия «Математическое моделирование и информационные технологии». No 8. 2016. С. 116–128.

Лисицын А.П., Кравчишина М.Д., Копелевич О.В. и др. Пространственно-временная изменчивость концентрации взвеси в деятельном слое Белого моря // Доклады Академии Наук, 2013, т. 453, No 4, с. 440–445.

R.A. Flather. A tidal model of the northwest European continental shelf. Memories de la Societe Royale des Sciences de Liege, 6(10):141–164, 1976.

Popova E. et al What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry // Journal Of Geophysical Research, vol. 117, 2012, C00D12.

Математическое моделирование Земной системы / Володин Е.М., Галин В.Я., Грицун А.С. и др. под ред. Яковлева Н.Г. — М.: МАКС Пресс, 2016.— 328 с.

Vichi M., Lovato T., Lazzari P., Cossarini G., Gutierrez Mlot E., Mattia G., Masina S., McKiver W. J., Pinardi N., Solidoro C., Tedesco L., Zavatarelli M. (2015). The Biogeochemical Flux Model (BFM): Equation Description and

User Manual. BFM version 5.1. BFM Report series N. 1, Release 1.1, July 2015, Bologna, Italy, http://bfm-community.eu, pp. 104.

Vichi M., Lovato T., Gutierrez Mlot E., McKiver W. (2015). Coupling BFM with Ocean models: the NEMO model (Nucleus for the European Modelling of the Ocean). BFM Report series N. 2, Release 1.0, August 2015, Bologna, Italy, http://bfm-community.eu, pp. 31

Cossarini, G., Querin, S., Solidoro, C., Sannino, G., Lazzari, P., Di Biagio, V., and Bolzon, G.: Development of BFMCOUPLER (v1.0), the coupling scheme that links the MITgcm and BFM models for ocean biogeochemistry simulations, Geosci. Model Dev., 10, 1423-1445, doi:10.5194/gmd-10-1423-2017, 2017.

Mussapa G., Zavatarelli M., Pinardi N., Celio M. management oriented 1-D ecosystem model: Implementation in the Gulf of Trieste (Adriatic Sea) // Regional Studies in Marine Science Volume 6, July 2016, Pages 109–123.

Lazzari, P., Solidoro, C., Salon, S., Bolzon, G. (2016). Spatial variability of phosphate and nitrate in the Mediterranean Sea: A modeling approach. Deep Sea Research Part I: Oceanographic Research Papers, 108, 39–52.

Vichi, M., Masina, S., and Navarra, A., 2007. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: numerical simulations. Journal of Marine Systems, 64, 110–134.

Vichi, M., Pinardi, N., and Masina, S., 2007. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. Journal of Marine Systems, 64, 89–109.

Patara, L., M. Vichi, and S. Masina, 2012, Impacts of natural and anthropogenic climate variations on north pacific plankton in an earth system model, Ecol. Model., 244, 132–147, 10.1016/j.ecolmodel.2012.06.012.

Tedesco L, Miettunen E, An BW, Haapala J, Kaartokallio H. Long-term mesoscale variability of modelled sea-ice primary production in the northern Baltic Sea. Elem Sci Anth. 2017;5:29. DOI: http://doi.org/10.1525/elementa.223

Mussap G., Zavatarelli M. A numerical study of the benthic–pelagic coupling in a shallow shelf sea (Gulf of Trieste) // Regional Studies in Marine Science, 2017, 9, 24–34.

K. Soetaert, P.M.J. Herman, and J.J. Middelburg. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta, 60(6):1019–1040, 1996.

Tedesco, L., Vichi, M., Haapala, J., and Stipa, T., 2010. A dynamic Biologically- Active Layer for numerical studies of the sea ice ecosystem. Ocean Modelling, 35, 89–104. doi:10.1016/j.ocemod.2010.06.008

Tedesco, L., Vichi, M., and Thomas, D. N., 2012. Process studies on the

ecological coupling between sea ice algae and phytoplankton. Ecological Modelling, 226, 120-138. doi:10.1016/j.ecolmodel.2011.11.011

Hunke E.C. et al. CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.0 LA-CC-06-012. 115 p.

Tedesco L., Vichi M., Haapala J., Stipa T. An enhanced sea ice thermodynamic model applied to the Baltic sea // Boreal Environment Research, v. 14, pp. 68–80.

O’Connor M.I. Warming strengthens an herbivore–plant interaction // Ecology, 90(2), 2009, pp. 388–398.

O’Connor M.I., Gilbert B., Brown C.J. Theoretical Predictions for How Temperature Affects the Dynamics of Interacting Herbivores and Plants // The American Naturalist, Vol. 178, No. 5, pp. 626–638.

Chernov I., Tolstikov n., Iakovlev N. Modelling of Tracer Transport in the White Sea // Proceedings of the 11-th International Scientific and Practical Conference «Environment. Technology. Resources». Rezekne, Latvia. Vol. I,

, p. 54-58.

Толстиков А.В. Изменчивость температуры поверхностного слоя Белого моря. М.: ГЕОС, 2016. 212 с.

REFERENCES in ENGLISH

Beloe more i ego vodosbor pod vliyaniem klimaticheskikh i prirodnykh faktorov [The White Sea and its watershed under influence of climate and antropogenic factors]. Petrozavodsk: KarRC RAS, 2007. 349 p.

Chernov I. A., Tolstikov A. V., Yakovlev N. G. Kompleksnaya model’ Belogo morya: gidrotermodinamika vod i morskogo l’da [Comprehensive model of the White Sea: hydrothermodynamics of water and sea ice]. Trudy KarNTs RAN [Trans. KarRC RAS]. 2016. No. 8. P. 116–128.

Lisitsyn A. P., Kravchishina M. D., Kopelevich O. V., Burenkov V. I., Shevchenko V. P., Vazyulya S. V., Klyuvitkin A. A., Novigatskii A. N., Politova N. V., Filippov A. S.,

Sheberstov S. V. Spatial and temporal variability in suspended particulate matter concentration within the active layer of the White Sea. Dokl. Earth Sciences. 2013. Vol. 453, no. 4. P. 440–445.

Rodionov A. A., Semenov E. V., Zimin A. V. Razvitie sistemy monitoringa i prognoza gidrofizicheskikh polei morskoi sredy v interesakh obespecheniya skrytnosti i zashchity korablei VMF [Development of the system for monitoring

and forecasting hydrophysical fields of the marine environment for stealthity and safety of the Navy]. Fundamental’naya i prikladnaya gidrofizika [Fundamental and applied hydrophysics]. 2012. Vol. 5, no. 2. P. 89–108.

Sarkisyan A. S., Zalesnyi V. B., Dianskii N. A., Ibraev R. A., Kuzin V. I., Moshonkin S. N., Semenov E. V., Tamsalu R., Yakovlev N. G. Matematicheskie modeli tsirkulyatsii okeanov i morei. Sovremennye problemy vychislitel’noi matematiki i matematicheskogo modelirovaniya [Mathematical models of circulation of oceans and seas. Modern problems of numerical mathematics

and mathematical modelling]. Vol. 2. Matematicheskoe modelirovanie

[Mathematical Modelling]. Moscow: Nauka, 2005. P. 174–278.

Tolstikov A. V. Izmenchivost’ temperatury poverkhnostnogo sloya Belogo morya [Varibility of the surface layer temperature of the White Sea]. Moscow: GEOS, 2016.

Volzhenskii M. N., Rodionov A. A., Semenov E. V., Filatov N. N., Zimin A. V.,

Bulatov M. B. Opyt verifikatsii operativnoi modeli dlya monitoringa gidrofizicheskikh polei Belogo morya [Experience of verifying the

oprative model for monitoring hydrophysical fields of the White Sea]. Fundamental’naya i prikladnaya gidrofizika [Fundamental and Applied

Hydrophysics]. 2009. Vol. 3. P. 33–41.

Volodin E. M., Galin V. Ya., Gritsun A. S., Gusev A. V., Dianskii N. A., Dymnikov V. P., Ibraev R. A., Kalmykov V. V., Kostrykin S. V., Kulyamin D. V., Lykosov V. N., Mortikov E. V., Rybak O. O., Tolstykh M. A., Fadeev R. Yu., Chernov I. A., Shashkin V. V., Yakovlev N. G. Matematicheskoe modelirovanie Zemnoi sistemy [Mathematical modelling of the Earth system]. Moscow: MAKS Press, 2016.

Yakovlev N. G. Coupled model of ocean general circulation and sea ice evolution in the Arctic Ocean. Izvestiya, Atmospheric and Oceanic Physics. 2003. Vol. 39, no. 3. P. 394–409.

Yakovlev N. G. Reproduction of the large-scale state of water and sea ice in the Arctic Ocean in 1948–2002: Part I. Numerical model. Izvestiya, Atmospheric and Oceanic Physics. 2009. Vol. 45, no. 3. P. 1–16.

Yakovlev N. G. On the simulation of temperature and salinity fields in the Arctic Ocean. Izvestiya, Atmospheric and Oceanic Physics. 2012. Vol. 48, no. 1. P. 100–116.

Chernov I., Tolstikov A., Yakovlev N. Modelling of tracer transport in the White

Sea. Proceed. of the 11-th Int. Scientific and Practical Conference "Environment. Technology. Resources". Vol. I. Rezekne, Latvia, 2017. P. 54–58.

Cossarini G., Querin S., Solidoro C., Sannino G., Lazzari P., Di Biagio V., Bolzon G. Development of BFMCOUPLER (v1.0), the coupling scheme that links the MITgcm and BFM models for ocean biogeochemistry simulations.

Geoscientific Model Development. 2017. Vol. 10, no. 4. P. 423–1445.

Zdorovennov R. E., Nazarova L. E., Tolstikov A. V., Bashmachnikov I. L.,

Bobvlev L. P., Brizgalo V. A., Chernook V. V., Denisov V. V., Donchenko V. K., Druzhinin P. V., Evensen G., Filatov A. N., Ingebeikin J. I., Ivanov V. V., Johannessen O. M., Kaitala S., Korosov A. A., Krasnov J. V., Kuosa H., Leonov A. V., Litvinenko A. V., Makarevich P. R., Miles M. W., Melentvev V. V., Neelov I. A., Pettersson L. H., Pozdnyakov D. V., Rastoskuev V. V., Salo Yu. A., Savchuk O. P.,

Shalina E. V., Shavykin A. A., Stipa T., Stuliy A. N., Volkov V. A., Terzhevik A. Yu.,

Filatov N. N. White Sea. Its Marine Environment and Ecosystem Dynamics Influenced by Global Change. Springer-Praxis, 2005.

Flather R. A. A tidal model of the northwest European continental shelf. Memories de la Societe Royale des Sciences de Liege. 1976. Vol. 6, no. 10. P. 141–164.

Hunke E. C., Lipscomb W. H. CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual. Los Alamos National

Laboratory, Los Alamos, 2010.

Lazzari P., Solidoro C., Salon S., Bolzon G. Spatial variability of phosphate and nitrate in the mediterranean sea: A modeling approach. Deep Sea Research. Part I: Oceanographic Research Papers. 2016. Vol. 108. P. 39–52.

Mussap G., Zavatarelli M. A numerical study of the benthic–pelagic coupling in a shallow shelf sea (Gulf of Trieste). Regional Studies in Marine Science. 2017. Vol. 9. P. 24–34.

Mussapa G., Zavatarelli M., Pinardi N., Celio M. Management oriented 1-d ecosystem model: Implementation in the Gulf of Trieste (Adriatic Sea). Regional Studies in Marine Science. 2016. Vol. 6. P. 109–123.

O’Connor M. I., Gilbert B., Brown C. J. Theoretical predictions for how temperature affects the dynamics of interacting herbivores and plants. The American Naturalist. 2011. No. 5. P. 626–638.

O’Connor M. I. Warming strengthens an herbivore-plant interaction. Ecology. 2009. Vol. 90, no. 2. P. 388–398.

Patara L., Vichi M., Masina S. Impacts of natural and anthropogenic climate variations on north pacific plankton in an Earth system model. Environmental Modelling. 2012. Vol. 244. P. 132–147.

Piroddi Ch., Teixeira H., Lynam Ch. P., Smith C., Alvarez M. C., Mazik K., Andonegi E., Churilova T., Tedesco L., Chifflet M., Chust G., Galparsoro I., Garcia A. C., Kamari M., Kryvenko O., Lassalle G., Neville S., Niquil N.,

Papadopoulou N., Rossberg A. G., Suslin V., Uyarra M. C. Using ecological models to assess ecosystem status in support of the european marine strategy framework directive. Ecological Indicators. 2015. Vol. 58. P. 175–191.

Popova E., Yool A., Coward A. C., Dupont F., Deal C., Elliott S., Hunke E., Jin M., Steele M., Zhang J. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. Journal of Geophysical Research. 2012. Vol. 117. P. C00D12.

Soetaert K., Herman P. M. J., Middelburg J. J. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta. 1996. Vol. 60, no. 6. P. 1019–1040.

Tedesco L., Piroddi Ch., Kamari M., Lynam Ch. Capabilities of Baltic sea models to assess environmental status for marine biodiversity. Marine Policy. 2016. Vol. 70. P. 1–12.

Tedesco L., Vichi M., Haapala J., Stipa T. A dynamic biologically-active layer for numerical studies of the sea ice ecosystem. Ocean Modelling. 2010. Vol. 35. P. 89–104.

Tedesco L., Vichi M., Haapala J., Stipa T. An enhanced sea ice thermodynamic model applied to the Baltic Sea. Boreal Environment Research.

Vol. 14. P. 68–80.

Tedesco L., Miettunen E., An B. W., Haapala J., Kaartokallio H. Long-term mesoscale variability of modelled sea-ice primary production in the northern Baltic sea. Elem Sci Anth. 2017. Vol. 5. P. 5–29.

Tedesco L., Vichi M., Thomas D. N. Process studies on the ecological coupling between sea ice algae and phytoplankton. Ecological Modelling.

Vol. 226. P. 120–138.

Vichi M., Masina S., Navarra A. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: numerical simulations. Journal of Marine Systems. 2007. Vol. 64. P. 110–134.

Vichi M., Pinardi N., Masina S. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. Journal of Marine Systems. 2007. Vol. 64. P. 89–109.

Vichi M., Cossarini G., Gutierrez M. E. et al. The Biogeochemical Flux Model (BFM): Equation description and user manual. Bologna: BFM Consortium, 2013.

Vichi M., Lovato T., Gutierrez Mlot E., McKiver W. Coupling BFM with Ocean models: the NEMO model (Nucleus for the European Modelling of the Ocean). Bologna: BFM Consortium, 2015.




DOI: http://dx.doi.org/10.17076/mat830

Ссылки

  • На текущий момент ссылки отсутствуют.


Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

© Труды КарНЦ РАН, 2014-2019