КРАТКОВРЕМЕННОЕ ОХЛАЖДЕНИЕ ПРОРОСТКОВ ИЛИ КОРНЕЙ ПШЕНИЦЫ ВЫЗЫВАЕТ ИЗМЕНЕНИЯ В УЛЬТРАСТРУКТУРЕ КЛЕТОК МЕЗОФИЛЛА ЛИСТА

ЮЛИЯ ВАЛЕРЬЕВНА ВЕНЖИК, Александр Федорович Титов, Вера Викторовна Таланова, Yulia Venzhik, Alexandr Titov, Vera Talanova

Аннотация


В условиях контролируемой среды изучали влияние кратковременного охлаждения (2°С, 10 минут) проростков пшеницы (Triticum aestivum L.) или только их корневой системы на холодоустойчивость и ультраструктуру клеток мезофилла листа. Установлено, что холодоустойчивость клеток листьев в последействии 10-минутного охлаждения проростков или корней начинает увеличиваться соответственно через 1 и 5 ч, достигая максимума через 24 ч. При этом в клетках мезофилла листьев уже в первые минуты и часы после охлаждения происходит целый ряд ультраструктурных перестроек, выявляемых с помощью электронной микроскопии. К ним относятся изменения формы и плотности хлоропластов, митохондрий и пероксисом, увеличение размеров митохондрий и хлоропластов, появление в них выростов и инвагинаций, скопление митохондрий и пероксисом около пластид. Помимо этого, кратковременное охлаждение проростков или корней вызывало в хлоропластах листьев изменения в тилакоидной системе. Так, через 24 ч после охлаждения проростков в их хлоропластах зафиксировано увеличение протяженности фотосинтетических мембран и коэффициента гранальности (за счет длины тилакоидов гранальных мембран). Под влиянием локального охлаждения корней, наоборот, уменьшалась длина фотосинтетических мембран, однако коэффициент гранальности заметно возрастал вследствие уменьшения длины мембран тилакоидов стромы. Сопоставление ультраструктурных преобразований, происходящих в клетках листьев при кратковременном и длительном охлаждении проростков пшеницы или только их корневой системы, позволило заключить, что в зависимости от характера (типа) низкотемпературного воздействия в растениях реализуются различные адаптивные программы, которые могут включать в себя как сходные (однотипные), так и разные изменения в ультраструктурной организации клеток листьев.

Ключевые слова


Triticum aestivum L.; кратковременное охлаждение; холодоустойчивость; хлоропласты; митохондрии; пероксисомы

Полный текст:

PDF

Литература


Балагурова Н. И., Дроздов С. Н., Хилков Н. И. Метод определения устойчивости растительных тканей к промораживанию. Петрозаводск: Карельский филиал АН СССР, 1982. 6 с.

Венжик Ю. В., Фролова С. А., Котеева Н. К., Мирославов Е. А., Титов А. Ф. Структурно-функциональные особенности растений Triticum aestivum L. (Poaceae) на начальном этапе холодовой адаптации // Бот. журн. 2008. Т. 93, № 9. С. 1367–1377.

Венжик Ю. В., Титов А. Ф., Таланова В. В., Мирославов Е. А., Котеева Н. К. Структурно-функциональная реорганизация фотосинтетического аппарата растений пшеницы при холодовой адаптации // Цитология. 2012. Т. 54, № 12. С. 916–924.

Веселов Д. С., Сабиржанова И. Б., Ахиярова Г. Р., Веселова С. В., Фархутдинов Р. Г., Мустафина А. Р., Митриченко А. Н., Дедов А. В., Веселов С. Ю., Кудоярова Г. Р. Роль гормонов в быстром ростовом ответе растений пшеницы на осмотический и холо-довой шок //Физиология растений. 2002. Т. 49, № 4. С. 572–576.

Кислюк И. М., Мирославов Е. А., Палеева Т. В. Стимуляция дыхания листьев пшеницы и пролиферация митохондрий в их клетках под влиянием охлаждения // Физиология растений. 1995. Т. 42, № 4. С. 603–606.

Мокроносов А. Т., Гавриленко В. Ф., Жигалова Т. В. Фотосинтез. Физиолого-экологические и биохимические аспекты. М.: Издательский центр «Академия», 2006.

с.

Попов В. Н., Антипина Н. В., Астахова Н. В. Изменения ультраструктуры хлоропластов растений табака в процессе защиты от окислительного стресса при гипотермии // Физиология растений. 2016. Т. 63, № 3. С. 319–326. doi: 10.7868/s 0015330316030118.

Реунов А. В. Пероксисомы растений: роль в метаболизме активных форм кислорода и опосредованных ими процессах // Успехи современной биологии. 2014. Т. 134, № 1. С. 48–60.

Титов А. Ф., Акимова Т. В., Таланова В. В., Топчиева Л. В. Устойчивость расте-ний в начальный период действия неблагоприятных температур. М.: Наука, 2006. 143 с.

Титов А. Ф., Таланова В. В. Устойчивость растений и фитогормоны. Петроза-водск: КарНЦ РАН, 2009. 206 с.

Титов А. Ф., Таланова В. В. Локальное действие высоких и низких температур на растения. Петрозаводск: Карельский научный центр РАН, 2011. 166 с.

Трунова Т. И. Растение и низкотемпературный стресс. М.: Наука, 2007.54 с.

Al-Hamdani S. H., Thomas T. S. Influence of root chilling on winter and spring wheat growth and carbon dioxide assimilation // Acta Agricult. Scandinavica. 2000. Vol. 50. P. 149–154.

Armstrong A. F., Logan D., Tobin A. K., OʾToole P., Atkin O. K. Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves // Plant Cell Environ. 2006. Vol. 29. P. 940–949. doi: 10.1111/j.1365-3040.2005.01475.x.

Buchner O., Holzinger A., Lütz C. Effects of temperature and light on the formation of chloroplasts protrusions in leaf mesophyll cells of high alpine plants // Plant Cell Environ. 2007. Vol. 30. P. 1347–1356. doi: 10.1111/j.1365-3040.2007.01707.x.

Crosatti C., Rizza F., Badeck F. W., Mazzucotelli E., Cattivelli L. Harden the chlorop-last to protect the plant // Physiol. Plant. 2012. Vol. 147. P. 55–63. doi:10.1111/j.1399-3054.2012.01689.x.

Cui H., Ma W., Hu J., Li Y., Zheng Y. Chilling tolerance evaluation, and physiological and ultrastructural changes under chilling stress in tobacco // Afr. J. Agricult. Res. 2012.

Vol. 7. P. 3349–3359. doi: 10.5897/ajar11.1481.

Del Río L. A., Sandalio L. M., Corpas F. J., Palma J. M., Barroso J. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling // Plant Physiology. 2006. Vol. 141. P. 330–335.

Garbero M., Andrade A., Reinoso H., Fernández B., Cuesta C., Granda V., Escudero C., Abdala G., Pedranzani H. Differential effect of short-term cold stress on growth, anatomy, and hormone levels in cold-sensitive versus resistance cultivars of Digiteria eriantha // Acta Physiol. Plant. 2012. Vol. 34. P. 2079–2091. doi: 10.1007/s11738-012-1007-x.

Heidarvand L., Maali Amili R. What happens in plant molecules responses to cold stress // Acta Physiol. Plant. 2010. Vol. 32. P. 419–431. doi: 10.1007/s11738-009-0451-8.

Holzinger A., Buchner O., Lütz C., Hanson M. R. Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana // Protop-lasma. 2007. Vol. 230. P. 23–30. doi:10.1007/s00709-006-0222-y.

Hudak J., Salaj J. Effect of low temperature on the structure of plant cells / Hand book of plant and crop stress. New York: Marcel Dekker, Inc. 1999. P. 441–464.

Ishikava H. A. Ultrastructural features of chilling injury: injured cells and the early events during chilling of suppression-cultured mung bean cells // Am. J. Bot. 1996. Vol. 83. P. 825–835.

Kaplan F., Guy C. L. Beta-amilase induction and the protective role of maltose during temperature shock // Plant Physiol. 2004. Vol. 135. P. 1674–1684. doi: 10.1104/pp.104.040808.

Kratsch H. A., Wise R. R. The ultrastructure of chilling stress // Plant Cell Environ. 2000. Vol. 23. P. 337–350. doi: 10.1046/j.1365-3040.2000.00560.x.

Kutik J., Hola D., Kocova M., Rothova O., Haise D., Wilhelmova N., Ticha I. Ultra-structure and dimensions of chloroplasts in leaves of three maize (Zea mays L.) inbred lines and their F1 hybrids grown under moderate chilling stress // Photosynthetica. 2004. Vol. 42. P. 447–455. doi: 10.1023/b:phot.0000046165.15048.a4.

Lee S. H., Singh A. D., Chung G. C., Ahn S. J., Noh E. K., Stendie E. Exposure of roots of cucumber (Cucumus sativus) to low temperature severely reduced root pressure, hydraulic conductivity and active transport of nutrients // Physiol. Plant. 2004. Vol. 120. P. 413–422. doi: 10.1111/j.0031-9317.2004.00248.x.

Li X.-G., Wang X.-M., Meng Q.-W., Zou Q. Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance // Photosynthetica. 2004. Vol. 42. P. 257–262. doi:10.1023/b:phot.0000040598.48732.af.

Li T. A., Xu S. L., Oses-Prieto J. A., Putil S., Xu P., Wang R. L., Li K. H., Maltby D. A., An L. H., Burlingame A. L., Deng Z. P., Wang Z. Y. Proteomics analysis reveals post-translational mechanisms for cold-induced metabolic changes in Arabidopsis // Mol. Plant. 2011. Vol. 4. P. 361–374. doi: 10.1093/mp/ssq078.

Li Z.-G., Yuan L.-X., Wang Q.-L., Ding Z.-L., Dong C.-Y. Combined action of antioxi-dant defense system and osmolytes in chilling shock-induced chilling tolerance in Jatropha curcas seedlings // Acta Physiol. Plant. 2013. Vol. 35. P. 2127–2136. doi: 10.1007/s11738-013-1249-2.

Logan D. C. Plant mitochondrial dynamics // Biochem. Biophys. Acta. 2006. Vol. 1763. P. 430–441.

Logan D. C. Mitochondrial fusion, division and positioning in plants // Biochem. Soc. Trands. 2010. Vol. 38. P. 789–795. doi: 10.1042/bst0380789.

Logan D. C., Leaver C. J. Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells // J. Exp. Bot. 2000. Vol. 51. P. 865–871. doi: 10.1093/jexbot/51.346.865.

Lütz C., Engel L. Changes of chloroplasts ultrastructure in some light-alpine plants: adaptation to metabolic demands and climate // Protoplasma. 2007. Vol. 231. P. 183–192. doi: 10.1007/s00709-007-0249-8.

Nyathi Y., Baker A. Plant peroxisomes as a source of signaling molecules // Biochem. Biophys. Acta. 2006. Vol. 1763. P. 1478–1495. doi: 10.1016/j.bbamcr.2006.08.031.

Palma J. M., Corpas F. J., Del Río L. A. Proteome of plant peroxisomes: a new perspectives on the role of these organelles in cell biology // Proteomics. 2009. Vol. 9. P. 2301–2312. doi: 10.1002/pmic.200700732.

Pribil M., Labs M., Leister D. Structure and dynamics of thylakoids in land plants // J. Exp. Bot. 2014. Vol. 65. P. 1955–1972. doi: 10.1093/jxb/eru090.

Ristic Z., Ashworth E.N. Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heun) cv. Columbia during rapid cold acclimation // Protoplasma. 1993. Vol. 172. P. 111–123. doi: 10.1007/bf01379368.

Rodríguez-Serrano M., Romero-Puertas M. C., Sparkes I., Hawes Ch. Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium // Free radical biology and medicine. 2009. Vol. 47. P. 1632–1639. doi: 10.1016/j.freeradbiomed.2009. 09.012.

Ruelland E., Zachowsky A. How plant sense temperature // Environ. Exp. Bot. 2010. Vol. 69. P. 225–232. doi: 10.1016/j.envexbot.2010.05.011.

Theocharis A., Clément Ch., Barka E. A. Physiological and molecular changes in plants grown at low temperature // Planta. 2012. Vol. 235. P. 1091–1105. doi: 10.1007/s00425-012-1641-y.

Van Gestel K., Verbelen J. P. Giant mitochondria are a response to low oxygen pressure in cells of tobacco (Nicotiana tabacum L.) // J. Exp. Bot. 2002. Vol. 53. P. 1215–1218.

Vella G. F., Joss T. V., Roberts T. H. Chilling-induced ultrastructural changes to me-sophyll cells of Arabidopsis grown under short days are almost completely reversible by plant re-warming // Protoplasma. 2012. Vol. 249. P. 1137–1149. doi: 10.1007/s00709-011-0363-5.

Venzhik Y. V., Titov A. F., Talanova V. V., Miroslavov E. A. Ultrastructure and func-tional activity of chloroplasts in wheat leaves under root chilling // Acta Physiol. Plant. 2014. Vol. 36. P. 323–330. doi: 10.1007/s11738-013-1413-8.

Venzhik Yu., Talanova V., Titov A. The effect of abscisic acid on cold tolerance and chloroplasts ultrastructure in wheat under optimal and cold stress conditions // Acta Physiol. Plant. 2016. Vol. 38 P. 1–10. doi: 10.1007/s11738-016-2082-1.

Veselova S., Farhutdinov R., Mitrichenko A., Symonyan M., Hartung W. The effect of root cooling on hormone content and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.) // Bulg. J. Plant Physiol. 2003. Special Issue. P. 360–366.

Wilkinson S., Clephan A. L., Davies W. J. Rapid low-temperature stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid // Plant Physiology. 2001. Vol. 126. P. 195–210.

Yadav S. K. Cold stress tolerance mechanisms in plant. A review // Agron. Sustain. Dev. 2010. Vol. 30. P. 1566–1578. doi: 10.1051/agro/2009050.

Yu J., Cang J., Zhou Z., Liu L. Anatomical structure composition between leaves of two winter wheat cultivars with different cold/freezing tolerance under low temperature stress // J. Northeast Agr University. 2011. Vol. 18. P. 1–3. doi: 10.1016/S1006-8104(13)60091-4.

References in English

Balagurova N. I., Drozdov S. N., Khilkov N. I. Metod opredeleniya ustoichivosti rastitel’nykh tkanei k promorazhivaniyu [Method for determination of plant tissues

resistance to freezing]. Petrozavodsk: Karel. fil. AN SSSR, 1982. 6 p.

Kislyuk I. M., Miroslavov E. A., Paleeva T. V. Stimulyatsiya dykhaniya list’ev pshenitsy i proliferatsiya mitokhondrii v ikh kletkakh pod vliyaniem okhlazhdeniya [Stimulation of wheat leaves respiration and proliferation of mitochondria in their cells under cooling]. Fiziol. rast [Russian Journal of Plant Physiology]. 1995. Vol. 42, no. 4. P. 603–606.

Mokronosov A. T., Gavrilenko V. F., Zhigalova T. V. Fotosintez. Fiziologo-ekologicheskie i biokhimicheskieaspekty [Photosynthesis. Physiological, ecological and biochemical aspects]. Moscow: Akademiya, 2006. 448 p.

Popov V. N., Antipina O. V., Astakhova N. V. Izmeneniya

ul’trastruktury khloroplastov rastenii tabaka v protsesse zashchity ot okislitel’nogo stressa pri gipotermii [Changes in chloroplasts ultrastructure of tobacco plants in the course of their protection from oxidative stress under hypothermia]. Fiziologiya rastenii [Russian Journal of Plant Physiology]. 2016. Vol. 63, no. 3. P. 301–307. doi: 10.7868/s0015330316030118

Reunov A. V. Peroksisomy rastenii: rol’ v metabolizme aktivnykh form kisloroda i oposredovannykh imi protsessakh [Plants peroxisomes: the role in metabolism of reactive oxygen species and the processes they mediate]. Uspekhi sovremennoi biologii [Biol. Bull. Rev.]. 2014. Vol. 4, no. 4. P. 311–322.

Titov A. F., Akimova T. V., Talanova V. V., Topchieva L. V. Ustoichivost’ rastenii v nachal’nyi period deistviya neblagopriyatnykh temperature [Plants tolerance in the initial period of extreme temperatures impact]. Moscow: Nauka, 2006. 143 p.

Titov A. F., Talanova V. V. Ustoichivost’ rastenii i fitogormony [Plants tolerance and phytohormones]. Petrozavodsk: KarRC of RAS, 2009. 206 p.

Titov A. F., Talanova V. V. Lokal’noe deistvie vysokikh i nizkikh temperatur na rasteniya [Local effect of high and low temperatures on plants]. Petrozavodsk: KarRC of RAS, 2011. 166 p.

Trunova T. I. Rastenie i nizkotemperaturnyi stress [Plants and low-temperature stress]. Timiryazevskie chteniya [Timiryazev Readings]. Moscow: Nauka, 2007. Vol. 64. 54 p.

Venzhik Yu. V., Frolova S. A., Koteeva N. K., Miroslavov E. A., Titov A. F. Strukturno-funktsional’nye osobennosti rastenii Triticum aestivum L. (Poaceae) na nachal’nom etape kholodovoi adaptatsii [Structural and functional features of the Triticum aestivum (Poaceae) plants in the initial period of cold adaptation]. Bot. zhurn. [Bot. Journal]. 2008. Vol. 93, no. 9. P. 1367–1377.

Venzhik Yu. V., Titov A. F., Talanova V. V., Miroslavov E. A., Koteeva N. K. Strukturno-funktsional’naya reorganizatsiya fotosinteticheskogo apparata rastenii pshenitsy pri kholodovoi adaptatsii [Structural and functional reorganization of photosynthetic apparatus of wheat plants in the course of cold adaptation]. Tsitologiya [Cell Tissue Biol.]. 2013. Vol. 7, no. 2.

P. 168–176.

Veselov D. S., Sabirzhanova I., Akhiyarova G., Veselova S. V., Farkhutdinov R. G., Mustafina A. R., Mitrichenko A. N., Dedov A. V., Veselov S. Yu., Kudoyarova G. R. Rol’ gormonov v bystrom rostovom otvete rastenii pshenitsy na osmoticheskii i kholodovoi shok [The role of hormones in fast growth responses of the wheat plants to osmotic and cold shocks]. Fiziologiya rastenii [Russian Journal of Plant Physiology]. 2002. Vol. 49, no. 4. P. 513–517.

Al-Hamdani S. H., Thomas T. S. Influence of root chilling on winter and spring wheat growth and carbon dioxide assimilation. Acta Agricult. Scandinavica. 2000. Vol. 50. P. 149–154.

Armstrong A. F., Logan D., Tobin A. K., O’Toole P., Atkin O. K. Heterogeneity of plant mitochondrial responsesunderpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ. 2006. Vol. 29. P. 940–949. doi: 10.1111/j.1365-3040.2005.01475.x

Buchner O., Holzinger A., Lütz C. Effects of temperature and light on the formation of chloroplasts protrusions in leaf mesophyll cells of high alpine plants. Plant Cell Environ. 2007. Vol. 30. P. 1347–1356. doi: 10.1111/j.1365-3040.2007.01707.x

Crosatti C., Rizza F., Badeck F. W., Mazzucotelli E., Cattivelli L. Harden the chloroplast to protect the plant. Physiol. Plant. 2013. Vol. 147. P. 55–63. doi: 10.1111/j.1399-3054.2012.01689.x

Cui H., Ma W., Hu J., Li Y., Zheng Y. Chilling tolerance evaluation, and physiological and ultrastructural changes under chilling stress in tobacco. Afr. J. Agricult. Res. 2012.Vol. 7. P. 3349–3359. doi: 10.5897/ajar11.1481

Del Río L. A., Sandalio L. M., Corpas F. J., Palma J. M., Barroso J. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiology. 2006. Vol. 141. P. 330–335.

Garbero M., Andrade A., Reinoso H., Fernández B., Cuesta C., Granda V., Escudero C., Abdala G., Pedranzani H. Differential effect of short-term cold stress on growth, anatomy, and hormone levels in cold-sensitive versus resistance cultivars of Digiteria eriantha. Acta Physiol. Plant. 2012. Vol. 34. P. 2079–2091. doi: 10.1007/s11738‑012‑1007‑x

Heidarvand L., Maali Amili R. What happens in plant molecules responses to cold stress. Acta Physiol. Plant. 2010. Vol. 32. P. 419–431. doi: 10.1007/s11738‑009‑0451‑8

Holzinger A., Buchner O., Lütz C., Hanson M. R. Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana. Protoplasma. 2007. Vol. 230. P. 23–30. doi:10.1007/s00709‑006‑0222‑y

Hudak J., Salaj J. Effect of low temperature on the structure of plant cells. Hand book of plant and crop stress. New York: Marcel Dekker, Inc., 1999. P. 441–464.

Ishikava H. A. Ultrastructural features of chilling injury: injured cells and the early events during chilling of suppression-cultured mung bean cells. Am. J. Bot. 1996. Vol. 83. P. 825–835.

Kaplan F., Guy C. L. Beta-amilase induction and the protective role of maltose during temperature shock. Plant Physiol. 2004. Vol. 135. P. 1674–1684. doi: 10.1104/pp.104.040808

Kratsch H. A., Wise R. R. The ultrastructure of chilling stress. Plant Cell Environ. 2000. Vol. 23. P. 337–350. doi: 10.1046/j.1365-3040.2000.00560.x

Kutik J., Hola D., Kocova M., Rothova O., Haise D., Wilhelmova N., Ticha I. Ultrastructure and dimensions of chloroplasts in leaves of three maize (Zea mays L.) inbred lines and their F1 hybrids grown under moderate chilling stress. Photosynthetica. 2004. Vol. 42. P. 447–455. doi: 10.1023/b:phot.0000046165.15048.a4

Lee S. H., Singh A. D., Chung G. C., Ahn S. J., Noh E. K., Stendie E. Exposure of roots of cucumber (Cucumus sativus) to low temperature severely reduced root pressure, hydraulic conductivity and active transportof nutrients. Physiol. Plant. 2004. Vol. 120. P. 413–422. doi: 10.1111/j.0031-9317.2004.00248.x

Li X.‑G., Wang X.‑M., Meng Q.‑W., Zou Q. Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Photosynthetica. 2004. Vol. 42. P. 257–262. doi: 10.1023/b:phot.0000040598.48732.af

Li T. A., Xu S. L., Oses-Prieto J. A., Putil S., Xu P., Wang R. L., Li K. H., Maltby D. A., An L. H., Burlingame A. L., Deng Z. P., Wang Z. Y. Proteomics analysis reveals post-translational mechanisms for cold-induced metabolic changes in Arabidopsis. Mol. Plant. 2011. Vol. 4. P. 361–374. doi: 10.1093/mp/ssq078

Li Z.‑G., Yuan L.‑X., Wang Q.‑L., Ding Z.‑L., Dong C.‑Y. Combined action of antioxidant defense system and osmolytes in chilling shock-induced chilling tolerance in Jatropha curcas seedlings. Acta Physiol. Plant. 2013. Vol. 35. P. 2127–2136. doi: 10.1007/s11738‑013‑1249‑2

Logan D. C. Plant mitochondrial dynamics. Biochem. Biophys. Acta. 2006. Vol. 1763. P. 430–441.

Logan D. C. Mitochondrial fusion, division and positioning in plants. Biochem. Soc. Trands. 2010. Vol. 38. P. 789–795. doi: 10.1042/bst0380789

Logan D. C., Leaver C. J. Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J. Exp. Bot. 2000. Vol. 51. P. 865–871. doi: 10.1093/jexbot/51.346.865

Lütz C., Engel L. Changes of chloroplasts ultrastructure in some light-alpine plants: adaptation to metabolic demands and climate. Protoplasma. 2007. Vol. 231. P. 183–192. doi: 10.1007/s00709‑007‑0249‑8

Nyathi Y., Baker A. Plant peroxisomes as a source of signaling molecules. Biochem. Biophys. Acta. 2006. Vol. 1763. P. 1478–1495. doi: 10.1016/j.bbamcr.2006.08.031

Palma J. M., Corpas F. J., Del Río L. A. Proteome of plant peroxisomes: a new perspectives on the role of these organelles in cell biology. Proteomics. 2009. Vol. 9. P. 2301–2312. doi: 10.1002/pmic.200700732

Pribil M., Labs M., Leister D. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 2014. Vol. 65. P. 1955–1972. doi: 10.1093/jxb/eru090

Ristic Z., Ashworth E. N. Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heun) cv. Columbia during rapid cold acclimation. Protoplasma. 1993. Vol. 172. P. 111–123. doi: 10.1007/bf01379368

Rodríguez-Serrano M., Romero-Puertas M. C., Sparkes I., Hawes Ch. Peroxisome dynamics in Arabidopsis plants under oxidative stress induced bycadmium. Free radical biology and medicine. 2009. Vol. 47. P. 1632–1639. doi: 10.1016/j.freeradbiomed.2009. 09.012

Ruelland E., Zachowsky A. How plant sense temperature. Environ. Exp. Bot. 2010. Vol. 69. P. 225–232. doi: 10.1016/j.envexbot.2010.05.011

Theocharis A., Clément Ch., Barka E. A. Physiological and molecular changes in plants grown at low temperature. Planta. 2012. Vol. 235. P. 1091–1105. doi: 10.1007/s00425‑012‑1641‑y

Van Gestel K., Verbelen J. P. Giant mitochondria are a response to low oxygen pressure in cells of tobacco (Nicotiana tabacum L.). J. Exp. Bot. 2002. Vol. 53. P. 1215–1218.

Vella G. F., Joss T. V., Roberts T. H. Chilling-induced ultrastructural changes to mesophyll cells of Arabidopsis grown under short days are almost completely reversible by plant re-warming. Protoplasma. 2012. Vol. 249. P. 1137–1149. doi: 10.1007/s00709‑011‑0363‑5

Venzhik Y. V., Titov A. F., Talanova V. V., Miroslavov E. A. Ultrastructure and functional activity of chloroplasts in wheat leaves under root chilling. Acta Physiol. Plant. 2014. Vol. 36. P. 323–330. doi: 10.1007/s11738‑013‑1413‑8

Venzhik Yu., Talanova V., Titov A. The effect of abscisic acid on cold tolerance and chloroplasts ultrastructure in wheat under optimal and cold stress conditions. Acta Physiol. Plant. 2016. Vol. 38 P. 1–10. doi: 10.1007/s11738‑016‑2082‑1

Veselova S., Farhutdinov R., Mitrichenko A., Symonyan M., Hartung W. The effect of root cooling on hormone content and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). Bulg. J. Plant Physiol. 2003. Special Issue. P. 360–366.

Wilkinson S., Clephan A. L., Davies W. J. Rapid lowtemperature

stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiology. 2001. Vol. 126. P. 195–210.

Yadav S. K. Cold stress tolerance mechanisms in plant. A review. Agron. Sustain. Dev. 2010. Vol. 30. P. 1566–1578. doi: 10.1051/agro/2009050

Yu J., Cang J., Zhou Z., Liu L. Anatomical structure composition between leaves of two winter wheat cultivars with different cold/freezing tolerance under low temperature stress. J. Northeast Agr. University. 2011. Vol. 18. P. 1–3. doi: 10.1016/S1006-8104(13)60091-4




DOI: http://dx.doi.org/10.17076/eb516

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019