Активные формы кислорода и компоненты антиоксидантной системы - участники метаболизма растений. Взаимосвязь с фенольным и углеводным обменом
Аннотация
Продолжительная история изучения ферментов антиоксидантной системы (АОС), низкомолекулярных неферментативных антиоксидантов (АО) и активных форм кислорода (АФК) позволила получить обширную информацию об их строении, функциях, локализации в растительных организмах. Большое количество имеющихся на данный момент исследований показывают, как ферменты АОС, АО реагируют на изменения условий окружающей среды; активно пополняются знания об участии АОС и АФК в процессах обеспечения жизнедеятельности растений, обсуждается, как качественно и количественно изменяется пул АФК. В настоящем обзоре предпринята попытка показать, как АОС, АО и АФК функционируют при осуществлении нормального метаболизма у растений. Рассматриваются реакции, осуществляемые в процессах роста, развития и старения, сигнальной регуляции. Показана взаимосвязь ферментов АОС, АО и АФК с фенольным и углеводным обменами в растительном организме.
Ключевые слова
Полный текст:
PDFЛитература
Гамалей И. А., Клюбин, И. В., Арнаутова, И. П., Кирпичникова, К. М. Пострецепторное образование активных форм кислорода в клетках, не являющихся профессиональными фагоцитами// Цитология. 1999. Т. 41, № 5. С. 394-399.
Жолнин А. В. Общая химия. Москва: ГЭОТАР-Медиа, 2012. 400 с.
Загоскина Н. В., Назаренко Л. В. Активные формы кислорода и антиоксидантная система растений // Вестник МГПУ. Серия «Естественные науки. 2016. № 22. С. 9-23.
Колупаев Ю. Е. Активные формы кислорода в растениях при действии стессоров: образование и возможные функции // Вестн. Харьковского нац. аграрн. ун-та. Сер. Биология. 2007. Вып. 3. С. 6-26.
Колупаев Ю. Е., Карпец, Ю. В. Формирование адаптивных реакций растений на действие абиотических стрессоров. К: Основа, 2010. 352 с.
Кордюм Е. Л., Сытник К. М., Бараненко В. В., Белявская Н. А., Климчук Д. А., Недуха Е. М. Клеточные механизмы адаптации растений к неблагоприятным воздействиям экологических факторов в естественных условиях. Киев: Наукова думка, 2003. 277 с.
Креславский В. Д., Лось Д. А., Аллахвердиев С. И., Кузнецов Вл. В. Сигнальная роль активных форм О2 при стрессе у растений // Физиология растений. 2012. Т. 59, №. 2. С. 163–178.
Крицкий М. С., Телегина Т. А. Коферменты и эволюция мира РНК // Успехи биологической химии. 2004. № 44. С. 341-364.
Ксенжек О. С., Петрова С. А. Электрохимические свойства обратимых биологических редокс-систем. М.: Наука, 1986. 152 с.
Мартинович, Г. Г., Черенкевич, С. Н. Окислительно-восстановительные процессы в клетках. Минск: БГУ, 2008. 159 с.
Меньщикова Е. Б., Зенков Н. К. Антиоксиданты и ингибиторы радикальных окислительных процессов // Успехи современной биологии. 1993. Т. 113, № 4. С. 442-455.
Мерзляк М. Н. Активированный кислород и жизнедеятельность растений // Соросовский образовательный журнал. 1999. № 9. С. 20-26.
Полесская О. Г. Растительная клетка и активные формы кислорода. Москва: КДУ, 2007. 139 с.
Полесская О. Г. Растительная клетка и активные формы кислорода. Москва: КДУ, 2007. 139 с.
Прадедова, Е. В., Ишеева, О. Д., Саляев, Р. К. Классификация системы антиоксидантной защиты как основа рациональной организации экспериментального исследования окислительного стресса у растений // Физиология растений. 2011. Т. 58, № 2. С. 177-185.
Тиунов Л. А. Механизмы естественной детоксикации и антиоксидантной защиты. Вестник РАМН. 1995. № 3. С. 9-13.
Хавинсон В. К., Баринов В. А., Арутюнян А. В., Малинин В. В. Свободнорадикальное окисление и старение. СПб.: Наука, 2003. 198 с.
Черенкевич С. Н., Мартинович Г. Г., Мартинович И. В., Горудко И. В., Шамова Е. В. Редокс-регуляция клеточной активности: концепции и механизмы // Весці Нацыянальнай Акадэміі Навук Беларусі. 2014. № 1. С. 92-108.
Akram N. A., Shafiq F., Ashraf M. Ascorbic acid-A potential oxidant scavenger and its role in plant development and abiotic stress tolerance // Frontiers in Plant Science. 2017. Vol. 8.doi: 10.3389/fpls.2017.00613
Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction // Annual review of plant biology. 2004. Vol. 55. Р. 373-399. doi: 10.1146/annurev.arplant.55.031903.141701
Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons // Annual review of plant biology. 1999. Vol. 50, no. 1. Р. 601-639. doi: 10.1146/annurev.arplant.50.1.601
Barra L., Pica N., Gouffi K., Walker G. C., Blanco C., Trautwetter A. Glucose 6-phosphate dehydrogenase is required for sucrose and trehalose to be efficient osmoprotectants in Sinorhizobium meliloti // FEMS microbiology letters. 2003. Vol. 229, no. 2. Р. 183-188. doi: 10.1016/s0378-1097(03)00819-x
Blokhina O., Virolainen E., Fagerstedt K. V. Antioxidants, oxidative damage and oxygen deprivation stress: a review // Annals of botany. 2003. Vol. 91, no. 2. P. 179-194. doi: 10.1093/aob/mcf118
Boutros T., Chevet E., Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer // Pharmacological reviews, 2008. Vol. 60, no. 3. P. 261-310. doi: 10.1124/pr.107.00106
Chaudière J., Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms // Food and chemical toxicology. 1999. Vol. 37, no. 9-10. P. 949-962. doi: 10.1016/s0278-6915(99)00090-3
Chaves M. M., Maroco J. P., Pereira J. S. Understanding plant responses to drought—from genes to the whole plant // Functional plant biology. 2003. Vol. 30, no. 3. P. 239-264. doi: 10.1071/fp02076
Chen J. H., Hales, C. N., Ozanne, S. E. DNA damage, cellular senescence and organismal ageing: causal or correlative? // Nucleic acids research. 2007. Vol. 35, no. 22. P. 7417-7428. doi: 10.1093/nar/gkm681
Chinnusamy V., Schumaker K., Zhu J. K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants // Journal of experimental botany. 2004. Vol. 55, no. 395. P. 225-236. doi: 10.1093/jxb/erh005
Contento A. L., Kim S. J., Bassham D. C. Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation // Plant physiology. 2004. Vol. 135, no. 4. P. 2330-2347. doi: 10.1104/pp.104.044362
Cosio C., Vuillemin L., De Meyer M., Kevers C., Penel C., Dunand C. An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity // Planta. 2009. Vol. 229, no. 4. P. 823-836. doi: 10.1007/s00425-008-0876-0
Crawford N. M. Mechanisms for nitric oxide synthesis in plants // Journal of experimental botany. 2005. Vol. 57, no. 3. P. 471-478. doi: 10.1093/jxb/erj050
Cui K., Xing G., Zhou G., Liu X., Wang Y. The induced and regulatory effects of plant hormones in somatic embryogenesis // Hereditas. 2000. Vol. 22, no. 5. P. 349-354. doi: 10.1007/7089_034
Dar M. I., Naikoo M. I., Khan F. A., Rehman F., Green I. D., Naushin F., Ansari A. A. An introduction to reactive oxygen species metabolism under changing climate in plants. Reactive oxygen species and antioxidant systems in plants // Role and Regulation under Abiotic Stress. Springer: Singapore, 2017, pp. 25-52. doi: 10.1007/978-981-10-5254-5_2
Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. Dual action of the active oxygen species during plant stress responses // Cellular and Molecular Life Sciences CMLS. 2000. Vol. 57, no. 5. P. 779-795. doi: 10.1007/s000180050041
Debnam P. M., Fernie A. R., Leisse A., Golding A., Bowsher C. G., Grimshaw C., Knight J. S., Emes M. J. Altered activity of the P2 isoform of plastidic glucose 6-phosphate dehydrogenase in tobacco (Nicotiana tabacum cv. Samsun) causes changes in carbohydrate metabolism and response to oxidative stress in leaves // The Plant Journal. 2004. Vol. 38, no. 1. P. 49-59. doi: 10.1111/j.1365-313x.2004.02017.x
del Rıo L. A., Pastori G. M., Palma J. M., Sandalio L. M., Sevilla F., Corpas F. J., Jiménez A., López-Huertas E., Hernández J. A. The activated oxygen role of peroxisomes in senescence // Plant Physiology. 1998. Vol. 116, no. 4. P. 1195-1200. doi.org/10.1104/pp.116.4.1195
Desikan R., Soheila A. H., Hancock J. T., Neill S. J. Regulation of the Arabidopsis transcriptome by oxidative stress // Plant physiology. 2001. Vol. 127, no. 1. P. 159-172. doi: 10.1104/pp.127.1.159
Dietz K. J. Plant peroxiredoxins // Annual review of plant biology. 2003. Vol. 54, no. 1. P. 93-107. doi: 10.1146/annurev.arplant.54.031902.134934
Dixon R. A., Paiva N. L. Stress-induced phenylpropanoid metabolism // The plant cell. 1995. Vol. 7, no. 7. P. 1085-1097. doi: 10.1105/tpc.7.7.1085
Doudican N. A., Song B., Shadel G. S., Doetsch P. W. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae // Molecular and cellular biology. 2005. Vol. 25, no. 12. P. 5196-5204. doi: 10.1128/mcb.25.12.5196-5204.2005
Essmann J., Schmitz-Thom I., Schön H., Sonnewald S., Weis E., Scharte J. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco // Plant physiology. 2008. Vol. 147, no. 3. P. 1288-1299. doi: 10.1104/pp.108.121418
Gechev T., Willekens H., Van Montagu M., Inzé D., Van Camp W., Toneva V., Minkov I. Different responses of tobacco antioxidant enzymes to light and chilling stress // Journal of Plant Physiology. 2003. Vol. 160, no. 5. P. 509-515. doi: 10.1078/0176-1617-00753
Guo H., Sun Y., Li Y., Liu X., Zhang W., Ge F. Elevated CO2 decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid // New Phytologist. 2014. Vol. 201, no. 1. P. 279-291. doi: 10.1111/nph.12484
Haagenson K. K., Wu G. S. The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment // Cancer and Metastasis Reviews. 2010. Vol. 29, no. 1. P. 143-149. doi: 10.1007/s10555-010-9208-5
Halliwell B., Gutteridge J. M.Free radicals in biology and medicine. Oxford University Press USA. 2015.
Hammond-Kosack K. E., Jones J. D. Resistance gene-dependent plant defense responses // The Plant Cell. 1996. Vol. 8, no. 10. P. 1773-1791. doi: 10.1105/tpc.8.10.1773
Harman D. Aging: a theory on free radical radiation chemistry // J. Gerontol. 1956. Vol. 11, P. 298–300. doi: 10.1093/geronj/11.3.298
Harman D. The biologic clock: the mitochondria? // Journal of the American Geriatrics Society. 1972. Vol. 20, no. 4. P. 145-147. doi: 10.1111/j.1532-5415.1972.tb00787.x
Henzler T., Steudle E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels // Journal of experimental botany. 2000. Vol. 51, no. 353. P. 2053-2066. doi: 10.1093/jexbot/51.353.2053
Hérouart D., Baudouin E., Frendo P., Harrison J., Santos R., Jamet A.,Van de Sype G.,Touati D., Puppo A. Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume–Rhizobium symbiosis? // Plant Physiology and Biochemistry. 2002. Vol. 40, no. 6-8. P. 619-624. doi: 10.1016/s0981-9428(02)01415-8
Hitchler M. J., Domann F. E. An epigenetic perspective on the free radical theory of development // Free Radical Biology and Medicine. 2007. Vol. 43, no. 7. P. 1023-1036. doi: 10.1016/j.freeradbiomed.2007.06.027
Jiménez A., Hernández J. A., Pastori G., del Rıo L. A., Sevilla F. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves // Plant physiology 1998. Vol. 118, no. 4. P. 1327-1335. doi: 10.1104/pp.118.4.1327
Jing H. C., Hebeler R., Oeljeklaus S., Sitek B., Stühler K., Meyer H. E., Sturre M. J. G., Hille J., Warscheid B., Dijkwel P. P. Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants // Plant Biology. 2008. Vol. 10. 85-98. doi: 10.1111/j.1438-8677.2008.00087.x
Joo J. Bae Y., Lee J. Generation of reactive oxygen species is essential for gravitropism in primary root of maize. Abstract presented at the Plant Biology 2000 Meeting San Diego CA 2000. July 15–19 2000 (No. 22004).
Juhnke H., Krems B., Kötter P., Entian K. D. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress // Molecular and General Genetics MGG. 1996. Vol. 252, no. 4. P. 456-464. doi: 10.1007/bf02173011
Kärkönen A., Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants // Phytochemistry. 2015. Vol. 112. P. 22–32. doi: 10.1016/j.phytochem.2014.09.016
Keunen E. L. S., Peshev D., Vangronsveld J., Van Den Ende W. I. M., Cuypers A. N. N. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept // Plant, cell & environment. 2013. Vol. 36, no. 7. P. 1242-1255. doi: 10.1111/pce.12061
Khan M. I. R., Khan N. A. Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Singapore: Springer. 2017. doi: 10.1007/978-981-10-5254-5
Kováčik J., Klejdus B., Hedbavny J., Štork F., Bačkor M. Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants // Plant and Soil. 2009. Vol. 320, no 1–2. P. 231–242. doi:10.1007/s11104-009-9889-0
Kovtun Y., Chiu W. L., Tena G., Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants // Proceedings of the national academy of sciences. 2000. Vol. 97, no. 6. P. 2940-2945. doi: 10.1073/pnas.97.6.2940
Lam E., Kato N., Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response // Nature. 2001. Vol. 411, no. 6839. P. 848-853. doi: 10.1038/35081184
Lamb C., Dixon R. A. The oxidative burst in plant disease resistance // Annual review of plant biology. 1997. Vol. 48, no. 1. P. 251-275. doi: 10.1146/annurev.arplant.48.1.251
Landis G. N., Abdueva D., Skvortsov D., Yang J., Rabin B. E., Carrick J., Tavaré S., Tower J. Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster // Proceedings of the National Academy of Sciences. 2004. Vol. 101, no. 20. P. 7663-7668. doi: 10.1073/pnas.0307605101
Lariguet P., Ranocha P., De Meyer M., Barbier O., Penel C., Dunand C. Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis // Planta. 2013. Vol. 238, no. 2. P. 381-395. doi: 10.1007/s00425-013-1901-5
Mangano S., Pacheco J. M., Marino-Buslje C., Estevez J. M. How does pH Fit in with Oscillating Polar Growth? // Trends in Plant Science. 2018. Vol. 23. P. 479–489. doi: 10. 1016/j.tplants.2018.02.008.
McCord J. M. The evolution of free radicals and oxidative stress // The American journal of medicine. 2000. Vol. 108, no. 8. P. 652-659. doi: 10.1016/s0002-9343(00)00412-5
McCord J. M., Turrens J. F. Mitochondrial injury by ischemia and reperfusion. In Current topics in bioenergetics, 1994. Vol. 17, P. 173-195. doi: 10.1016/b978-0-12-152517-0.50011-6
Mishra B., Singh Sangwan N. Amelioration of cadmium stress in Withania somnifera by ROS management: active participation of primary and secondary metabolism // Plant Growth Regulation. 2019. Vol. 87, no. 3. P. 403–412. doi:10.1007/s10725-019-00480-8
Mittler R. ROS are good // Trends in plant science. 2017. Vol. 22, no. 1. P. 11–19. doi: 10.1016/j. tplants.2016.08.002.
Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants // Trends in plant science. 2004. Vol. 9, no. 10. P. 490-498. doi: 10.1016/j.tplants.2004.08.009
Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V. B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. ROS signaling: the new wave? // Trends in plant science. 2011. Vol. 16, no. 6. P. 300-309. doi: 10.1016/j.tplants.2011.03.007
Mittova V., Volokita M., Guy M., Tal M. Activities of SOD and the ascorbate‐glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt‐tolerant relative Lycopersicon pennellii // Physiologia plantarum. 2000. Vol. 110, no. 1. P. 42-51. doi: 10.1034/j.1399-3054.2000.110106.x
Møller I. M., Jensen P. E., Hansson A. Oxidative modifications to cellular components in plants // Annu. Rev. Plant Biol. 2007. Vol. 58, P. 459-481. doi: 10.1146/annurev.arplant.58.032806.103946
Naikoo M. I., Dar M. I., Raghib F., Jaleel H., Ahmad B., Raina A., ... Naushin F. Role and regulation of plants phenolics in abiotic stress tolerance: an overview // Plant signaling molecules. Woodhead Publishing, 2019, pp. 157-168. doi: 10.1016/b978-0-12-816451-8.00009-5
Nichols S. N., Hofmann R. W., Williams W. M. Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids // Environmental and Experimental Botany. 2015. Vol. 119, P. 40–47. doi: 10.1016/j.envexpbot.2015.05.014
Noctor G., Gomez L., Vanacker H., Foyer C. H. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling // Journal of experimental botany. 2002. Vol. 53, no. 372. P. 1283-1304. doi: 10.1093/jexbot/53.372.1283
Noctor G., Reichheld J.-P., Foyer C. H. ROS-related redox regulation and signaling in plants // Seminars in Cell & Developmental Biology. 2018. Vol. 80. P. 3–12. doi: 10.1016/j.semcdb. 2017.07.013
Pedreno M. A., Barcelo A. R., Sabater F., Munoz R. Control by pH of cell wall peroxidase activity involved in lignification // Plant and cell physiology. 1989. Vol. 30, no. 2. P. 237-241. doi: 10.1093/oxfordjournals.pcp.a077735
Pei Z. M., Murata Y., Benning G., Thomine S., Klüsener B., Allen G. J., Grill E., Schroeder J. I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells // Nature. 2000. Vol. 406, no. 6797. P. 731-734. doi: 10.1038/35021067
Pellinen R., Palva T., KangasjaÈrvi J. Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells // The Plant Journal. 1999. Vol. 20, no. 3. P. 349-356. doi: 10.1046/j.1365-313x.1999.00613.x
Pitzschke A., Hirt H. Mitogen-activated protein kinases and reactive oxygen species signaling in plants // Plant physiology. 2006. Vol. 141, no. 2. P. 351-356. doi: 10.1104/pp.106.079160
Polle A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis // Plant physiology. 2001. Vol. 126, no. 1. P. 445-462. doi: 10.1104/pp.126.1.445
Prasad T. K. Mechanisms of chilling‐induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities // The Plant Journal. 1996. Vol. 10, no. 6. P. 1017-1026. doi: 10.1046/j.1365-313x.1996.10061017.x
Price J., Laxmi A., Martin S. K. S., Jang J. C. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis // The Plant Cell. 2004. Vol. 16, no. 8. P. 2128-2150. doi: 10.1105/tpc.104.022616
Ramu S. K., Peng H. M., Cook D. R. Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula // Molecular plant-microbe interactions. 2002. Vol. 15, no. 6. P. 522-528. doi: 10.1094/mpmi.2002.15.6.522
Rolland F., Baena-Gonzalez E., Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms // Annu. Rev. Plant Biol. 2006. Vol. 57, P. 675-709. doi: 10.1146/annurev.arplant.57.032905.105441
Rouhier N., Vlamis-Gardikas A., Lillig C. H., Berndt C., Schwenn J. D., Holmgren A., Jacquot J. P. Characterization of the redox properties of poplar glutaredoxin // Antioxidants and Redox Signaling. 2003. Vol. 5, no. 1. P. 15-22. doi: 10.1089/152308603321223504
Saab-Rincon G., Valderrama B. Protein engineering of redox-active enzymes // Antioxidants & redox signaling. 2009. Vol. 11, no. 2. P. 167-192. doi: 10.1089/ars.2008.2098
Sakihama Y., Mano J. I., Sano S., Asada K., Yamasaki H. Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase // Biochemical and Biophysical Research Communications. 2000. Vol. 279, no. 3. P. 949-954. doi: 10.1006/bbrc.2000.4053
Sakihama Y., Yamasaki H. Lipid peroxidation induced by phenolics in conjunction with aluminum ions // Biologia Plantarum. 2002. Vol. 45, no. 2. P. 249-254. doi: 10.1023/a:1015152908241
Scandalios J. G. Oxidative stress and the molecular biology of antioxidant defenses. 1997. no. 04, QP177, S2.
Scandalios J. G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses // Brazilian Journal of Medical and Biological Research. 2005. Vol. 38, no. 7. P. 995-1014. doi: 10.1590/s0100-879x2005000700003
Scheibe R., Backhausen J. E., Emmerlich V., Holtgrefe S. Strategies to maintain redox homeostasis during photosynthesis under changing conditions // Journal of Experimental Botany. 2005. Vol. 56, no. 416. P. 1481-1489. doi: 10.1093/jxb/eri181
Schopfer P. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth // The Plant Journal. 2001. Vol. 28, no. 6. P. 679-688. doi: 10.1046/j.1365-313x.2001.01187.x
Schürmann P. Redox signaling in the chloroplast: the ferredoxin/thioredoxin system // Antioxidants and Redox Signaling. 2003. Vol. 5, no. 1. P. 69-78. doi: 10.1089/152308603321223559
Skulachev V. P. Bioenergetic aspects of apoptosis, necrosis and mitoptosis // Apoptosis 2006. Vol. 11, no. 4. P. 473-485. doi: 10.1007/s10495-006-5881-9
Suzuki N., Mittler R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction // Physiologia plantarum. 2006. Vol. 126, no. 1. P. 45-51. doi: 10.1111/j.0031-9317.2005.00582.x
Takahashi S., Murata N. How do environmental stresses accelerate photoinhibition? // Trends in plant science. 2008. Vol. 13, no. 4. P. 178-182. doi: 10.1016/j.tplants.2008.01.005
Takemoto D., Tanaka A., Scott B. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation // Fungal Genetics and Biology. 2007. Vol. 44, no. 11. P. 1065-1076. doi: 10.1016/j.fgb.2007.04.011
Torres M. A., Dangl J. L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development // Current opinion in plant biology. 2005. Vol. 8, no. 4. P. 397-403. doi: 10.1016/j.pbi.2005.05.014
Treutter D. Significance of flavonoids in plant resistance: a review // Environmental Chemistry Letters. 2006. Vol. 4, no. 3. P. 147. doi: 10.1007/s10311-006-0068-8
Van Breusegem F., Vranová E., Dat J. F., Inzé D. The role of active oxygen species in plant signal transduction // Plant Science. 2001. Vol. 161, no. 3. P. 405-414. doi: 10.1016/s0168-9452(01)00452-6
Van den Ende W., Valluru R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? // Journal of experimental botany. 2008. Vol. 60, no. 1. P. 9-18. doi: 10.1093/jxb/ern297
Vatankhah E., Niknam V., Ebrahimzadeh H. Activity of antioxidant enzyme during in vitro organogenesis in Crocus sativus // Biologia Plantarum. 2010. Vol. 54, no. 3. P. 509-514. doi: 10.1007/s10535-010-0089-9
Vernoux T., Wilson R. C., Seeley K. A., Reichheld J. P., Muroy S., Brown S., Maughan S. C., Cobbett C. S., Van Montagu M., Inzé D., May M. J.,Sung Z. R.The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development // The Plant Cell. 2000. Vol. 12, no. 1. P. 97-109. doi: 10.1105/tpc.12.1.97
Vuolo M. M., Lima V. S., Maróstica Junior M. R. Phenolic Compounds // Bioactive Compounds. 2019. P. 33–50. doi:10.1016/b978-0-12-814774-0.00002-5
Walker J. R., Ferrar P. H. Diphenol oxidases, enzyme-catalysed browning and plant disease resistance // Biotechnology and Genetic Engineering Reviews. 1998. Vol. 15, no. 1. P. 457-498. doi: 10.1080/02648725.1998.10647966
Wang Y., Branicky R., Noë A., Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling // Journal of Cell Biology. 2018. Vol. 217, no. 6. P. 1915-1928. doi: 10.1083/jcb.201708007
Waszczak C., Carmody M., Kangasjärvi J.Reactive Oxygen Species in Plant Signaling //Annual Review of Plant Biology. 2018. Vol. 69, no. 1. P. 209–236. doi:10.1146/annurev-arplant-042817-040322
Zhao H., Ye L., Wang Y., Zhou X., Yang J., Wang J., ... Zou Z. Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle // Frontiers in plant science. 2016. Vol. 7 doi: 10.3389/fpls.2016.01814
References in English
Akram N. A., Shafiq F., Ashraf M. Ascorbic acid-A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science. 2017. Vol. 8.doi: 10.3389/fpls.2017.00613
Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual review of plant biology. 2004. Vol. 55. Р. 373-399. doi: 10.1146/annurev.arplant.55.031903.141701
Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual review of plant biology. 1999. Vol. 50, no. 1. Р. 601-639. doi: 10.1146/annurev.arplant.50.1.601
Barra L., Pica N., Gouffi K., Walker G. C., Blanco C., Trautwetter A. Glucose 6-phosphate dehydrogenase is required for sucrose and trehalose to be efficient osmoprotectants in Sinorhizobium meliloti. FEMS microbiology letters. 2003. Vol. 229, no. 2. Р. 183-188. doi: 10.1016/s0378-1097(03)00819-x
Blokhina O., Virolainen E., Fagerstedt K. V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of botany, 2003. Vol. 91, no. 2. P. 179-194. doi: 10.1093/aob/mcf118
Boutros T., Chevet E., Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacological reviews, 2008. Vol. 60, no. 3. P. 261-310. doi: 10.1124/pr.107.00106
Chaudière J., Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food and chemical toxicology. 1999. Vol. 37, no. 9-10. P. 949-962. doi: 10.1016/s0278-6915(99)00090-3
Chaves M. M., Maroco J. P., Pereira J. S. Understanding plant responses to drought—from genes to the whole plant. Functional plant biology. 2003. Vol. 30, no. 3. P. 239-264. doi: 10.1071/fp02076
Chen J. H., Hales, C. N., Ozanne, S. E. DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic acids research. 2007. Vol. 35, no. 22. P. 7417-7428. doi: 10.1093/nar/gkm681
Cherenkevich S. N., Martinovich G. G., Martinovich I. V., Gorudko I. V., SHamova E. V. Redoks-regulyaciya kletochnoj aktivnosti: koncepcii i mekhanizmy. ВесціНацыянальнайАкадэмііНавукБеларусі. 2014. No. 1. P. 92-108.
Chinnusamy V., Schumaker K., Zhu J. K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of experimental botany. 2004. Vol. 55, no. 395. P. 225-236. doi: 10.1093/jxb/erh005
Contento A. L., Kim S. J., Bassham D. C. Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant physiology. 2004. Vol. 135, no. 4. P. 2330-2347. doi: 10.1104/pp.104.044362
Cosio C., Vuillemin L., De Meyer M., Kevers C., Penel C., Dunand C. An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta. 2009. Vol. 229, no. 4. P. 823-836. doi: 10.1007/s00425-008-0876-0
Crawford N. M. Mechanisms for nitric oxide synthesis in plants. Journal of experimental botany. 2005. Vol. 57, no. 3. P. 471-478. doi: 10.1093/jxb/erj050
Cui K., Xing G., Zhou G., Liu X., Wang Y. The induced and regulatory effects of plant hormones in somatic embryogenesis. Hereditas. 2000. Vol. 22, no. 5. P. 349-354. doi: 10.1007/7089_034
Dar M. I., Naikoo M. I., Khan F. A., Rehman F., Green I. D., Naushin F., Ansari A. A. An introduction to reactive oxygen species metabolism under changing climate in plants. Reactive oxygen species and antioxidant systems in plants. Role and Regulation under Abiotic Stress. Springer: Singapore, 2017, pp. 25-52. doi: 10.1007/978-981-10-5254-5_2
Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS. 2000. Vol. 57, no. 5. P. 779-795. doi: 10.1007/s000180050041
Debnam P. M., Fernie A. R., Leisse A., Golding A., Bowsher C. G., Grimshaw C., Knight J. S., Emes M. J. Altered activity of the P2 isoform of plastidic glucose 6-phosphate dehydrogenase in tobacco (Nicotiana tabacum cv. Samsun) causes changes in carbohydrate metabolism and response to oxidative stress in leaves. The Plant Journal. 2004. Vol. 38, no. 1. P. 49-59. doi: 10.1111/j.1365-313x.2004.02017.x
del Rıo L. A., Pastori G. M., Palma J. M., Sandalio L. M., Sevilla F., Corpas F. J., Jiménez A., López-Huertas E., Hernández J. A. The activated oxygen role of peroxisomes in senescence. Plant Physiology. 1998. Vol. 116, no. 4. P. 1195-1200. doi.org/10.1104/pp.116.4.1195
Desikan R., Soheila A. H., Hancock J. T., Neill S. J. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant physiology. 2001. Vol. 127, no. 1. P. 159-172. doi: 10.1104/pp.127.1.159
Dietz K. J. Plant peroxiredoxins. Annual review of plant biology. 2003. Vol. 54, no. 1. P. 93-107. doi: 10.1146/annurev.arplant.54.031902.134934
Dixon R. A., Paiva N. L. Stress-induced phenylpropanoid metabolism. The plant cell. 1995. Vol. 7, no. 7. P. 1085-1097. doi: 10.1105/tpc.7.7.1085
Doudican N. A., Song B., Shadel G. S., Doetsch P. W. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Molecular and cellular biology. 2005. Vol. 25, no. 12. P. 5196-5204. doi: 10.1128/mcb.25.12.5196-5204.2005
Essmann J., Schmitz-Thom I., Schön H., Sonnewald S., Weis E., Scharte J. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant physiology. 2008. Vol. 147, no. 3. P. 1288-1299. doi: 10.1104/pp.108.121418
Gamalei I. A., Klyubin I. V., Arnautova I. P., Kirpichnikova K. M. Post-receptor formation of active forms of oxygen in nonphagocytic cells. Tsitologiya. 1999. Vol. 41, no. 5. P. 394–399.
Gechev T., Willekens H., Van Montagu M., Inzé D., Van Camp W., Toneva V., Minkov I. Different responses of tobacco antioxidant enzymes to light and chilling stress. Journal of Plant Physiology. 2003. Vol. 160, no. 5. P. 509-515. doi: 10.1078/0176-1617-00753
Guo H., Sun Y., Li Y., Liu X., Zhang W., Ge F. Elevated CO2 decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid. New Phytologist. 2014. Vol. 201, no. 1. P. 279-291. doi: 10.1111/nph.12484
Haagenson K. K., Wu G. S. The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment. Cancer and Metastasis Reviews. 2010. Vol. 29, no. 1. P. 143-149. doi: 10.1007/s10555-010-9208-5
Halliwell B., Gutteridge J. M.Free radicals in biology and medicine. Oxford University Press USA. 2015.
Hammond-Kosack K. E., Jones J. D. Resistance gene-dependent plant defense responses. The Plant Cell. 1996. Vol. 8, no. 10. P. 1773-1791. doi: 10.1105/tpc.8.10.1773
Harman D. Aging: a theory on free radical radiation chemistry. J. Gerontol. 1956. Vol. 11, P. 298–300. doi: 10.1093/geronj/11.3.298
Harman D. The biologic clock: the mitochondria? Journal of the American Geriatrics Society. 1972. Vol. 20, no. 4. P. 145-147. doi: 10.1111/j.1532-5415.1972.tb00787.x
Henzler T., Steudle E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. Journal of experimental botany. 2000. Vol. 51, no. 353. P. 2053-2066. doi: 10.1093/jexbot/51.353.2053
Hérouart D., Baudouin E., Frendo P., Harrison J., Santos R., Jamet A., Van de Sype G., Touati D., Puppo A. Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume–Rhizobium symbiosis? Plant Physiology and Biochemistry. 2002. Vol. 40, no. 6-8. P. 619-624. doi: 10.1016/s0981-9428(02)01415-8
Hitchler M. J., Domann F. E. An epigenetic perspective on the free radical theory of development. Free Radical Biology and Medicine. 2007. Vol. 43, no. 7. P. 1023-1036. doi: 10.1016/j.freeradbiomed.2007.06.027
Jiménez A., Hernández J. A., Pastori G., del Rıo L. A., Sevilla F. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant physiology 1998. Vol. 118, no. 4. P. 1327-1335. doi: 10.1104/pp.118.4.1327
Jing H. C., Hebeler R., Oeljeklaus S., Sitek B., Stühler K., Meyer H. E., Sturre M. J. G., Hille J., Warscheid B., Dijkwel P. P. Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants. Plant Biology. 2008. Vol. 10. 85-98. doi: 10.1111/j.1438-8677.2008.00087.x
Joo J. Bae Y., Lee J. Generation of reactive oxygen species is essential for gravitropism in primary root of maize. Abstract presented at the Plant Biology 2000 Meeting San Diego CA 2000. July 15–19 2000 (No. 22004).
Juhnke H., Krems B., Kötter P., Entian K. D. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Molecular and General Genetics MGG. 1996. Vol. 252, no. 4. P. 456-464. doi: 10.1007/bf02173011
Kärkönen A., Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry. 2015. Vol. 112. P. 22–32. doi: 10.1016/j. phytochem.2014.09.016
Keunen E. L. S., Peshev D., Vangronsveld J., Van Den Ende W. I. M., Cuypers A. N. N. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, cell & environment. 2013. Vol. 36, no. 7. P. 1242-1255. doi: 10.1111/pce.12061
Khan M. I. R., Khan N. A. Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Singapore: Springer. 2017. doi: 10.1007/978-981-10-5254-5
Khavinson V. K., Barinov V. A., Arutyunyan A. V., Malinin V. V. Svobodnoradikal’noe okislenie i starenie [Free Radial Oxidation and Aging]. St. Petersburg: Nauka, 2003. 198 p.
Kolupaev Ju. E., Karpec Ju. V. Plant adaptive reaction formation against abiotic stress action. Kiev: Osnova, 2010. 352 p.
Kolupaev Yu. E. Aktivny’e formy’ kisloroda v rasteniyax pri dejstvii stressorov: obrazovanie i vozmozhny’e funkcii. Vestnik Xar’kovskogo nacional’nogo agrarnogo universiteta. Ser. Biologiya. 2007. Vol. 3, no. 12. P. 6–26.
Kordyum E. L., Sy’tnik K. M., Baranenko V. V., Belyavskaya N. A., Klimchuk D. A., Neduxa E. M. Kletochny’e mexanizmy’ adaptacii rastenij k neblagopriyatny’m vozdejstviyam e’kologicheskix faktorov v estestvenny’x usloviyax. Kiev: Naukova dumka, 2003. 277 p.
Kováčik J., Klejdus B., Hedbavny J., Štork F., Bačkor M. Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant and Soil. 2009. Vol. 320, no 1–2. P. 231–242. doi:10.1007/s11104-009-9889-0
Kovtun Y., Chiu W. L., Tena G., Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the national academy of sciences. 2000. Vol. 97, no. 6. P. 2940-2945. doi: 10.1073/pnas.97.6.2940
Kreslavski V. D., Los D. A. Allakhverdiev S. I., Kuznetsov V. V.Signaling role of reactive oxygen species in plants under stress. Russian Journal of Plant Physiology. 2012. Vol. 59, no. 2. P. 141–154. doi:10.1134/s1021443712020057
Kritsky M. S., Telegina T. A. Coenzymes in evolution of the RNA world. Usp. Biol. Khim. 2004. Vol. 44. P. 341–361.
Ksenzhek O. S., Petrova S. A. Elektrokhimicheskie svoistva obratimykh biologicheskikh redoks-sistem [Electrochemical Properties of Reversible Biological Redox Systems]. Moscow: Nauka, 1986. 152 p.
Lam E., Kato N., Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature. 2001. Vol. 411, no. 6839. P. 848-853. doi: 10.1038/35081184
Lamb C., Dixon R. A. The oxidative burst in plant disease resistance. Annual review of plant biology. 1997. Vol. 48, no. 1. P. 251-275. doi: 10.1146/annurev.arplant.48.1.251
Landis G. N., Abdueva D., Skvortsov D., Yang J., Rabin B. E., Carrick J., Tavaré S., Tower J. Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proceedings of the National Academy of Sciences. 2004. Vol. 101, no. 20. P. 7663-7668. doi: 10.1073/pnas.0307605101
Lariguet P., Ranocha P., De Meyer M., Barbier O., Penel C., Dunand C. Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis. Planta. 2013. Vol. 238, no. 2. P. 381-395. doi: 10.1007/s00425-013-1901-5
Mangano S., Pacheco J. M., Marino-Buslje C., Estevez J. M. How does pH Fit in with Oscillating Polar Growth? Trends in Plant Science. 2018. Vol. 23. P. 479–489. doi: 10. 1016/j.tplants.2018.02.008.
Martinovich G. G., Cherenkevich S. N. Oxidation-reduction processes in cells. Minsk: BGU, 2008. 159 p.
McCord J. M. The evolution of free radicals and oxidative stress. The American journal of medicine. 2000. Vol. 108, no. 8. P. 652-659. doi: 10.1016/s0002-9343(00)00412-5
McCord J. M., Turrens J. F. Mitochondrial injury by ischemia and reperfusion. In Current topics in bioenergetics, 1994. Vol. 17, P. 173-195. doi: 10.1016/b978-0-12-152517-0.50011-6
Men’shchikova E. B., Zenkov N. K. Antioxidants and Inhibitors of Radical Oxidative Processes. Usp. Sovrem. Biol. 1993. Vol. 113. P. 442–455.
Merzlyak M. N. Activated oxygen and plant life. Soros Educational J. 1999. Vol. 9. P. 20-26.
Mishra B., Singh Sangwan N. Amelioration of cadmium stress in Withania somnifera by ROS management: active participation of primary and secondary metabolism. Plant Growth Regulation. 2019. Vol. 87, no. 3. P. 403–412. doi:10.1007/s10725-019-00480-8
Mittler R. ROS are good. Trends in plant science. 2017. Vol. 22, no. 1. P. 11–19. doi: 10.1016/j. tplants.2016.08.002.
Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants. Trends in plant science. 2004. Vol. 9, no. 10. P. 490-498. doi: 10.1016/j.tplants.2004.08.009
Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V. B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. ROS signaling: the new wave? Trends in plant science. 2011. Vol. 16, no. 6. P. 300-309. doi: 10.1016/j.tplants.2011.03.007
Mittova V., Volokita M., Guy M., Tal M. Activities of SOD and the ascorbate‐glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt‐tolerant relative Lycopersicon pennellii.Physiologia plantarum. 2000. Vol. 110, no. 1. P. 42-51. doi: 10.1034/j.1399-3054.2000.110106.x
Møller I. M., Jensen P. E., Hansson A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 2007. Vol. 58, P. 459-481. doi: 10.1146/annurev.arplant.58.032806.103946
Naikoo M. I., Dar M. I., Raghib F., Jaleel H., Ahmad B., Raina A., ... Naushin F. Role and regulation of plants phenolics in abiotic stress tolerance: an overview. Plant signaling molecules. Woodhead Publishing, 2019, pp. 157-168. doi: 10.1016/b978-0-12-816451-8.00009-5
Nichols S. N., Hofmann R. W., Williams W. M. Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids. Environmental and Experimental Botany. 2015. Vol. 119, P. 40–47. doi: 10.1016/j.envexpbot.2015.05.014
Noctor G., Gomez L., Vanacker H., Foyer C. H. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal of experimental botany. 2002. Vol. 53, no. 372. P. 1283-1304. doi: 10.1093/jexbot/53.372.1283
Noctor G., Reichheld J.-P., Foyer C. H. ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology. 2018. Vol. 80. P. 3–12. doi: 10.1016/j.semcdb. 2017.07.013
Pedreno M. A., Barcelo A. R., Sabater F., Munoz R. Control by pH of cell wall peroxidase activity involved in lignification. Plant and cell physiology. 1989. Vol. 30, no. 2. P. 237-241. doi: 10.1093/oxfordjournals.pcp.a077735
Pei Z. M., Murata Y., Benning G., Thomine S., Klüsener B., Allen G. J., Grill E., Schroeder J. I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000. Vol. 406, no. 6797. P. 731-734. doi: 10.1038/35021067
Pellinen R., Palva T., KangasjaÈrvi J. Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. The Plant Journal. 1999. Vol. 20, no. 3. P. 349-356. doi: 10.1046/j.1365-313x.1999.00613.x
Pitzschke A., Hirt H. Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant physiology. 2006. Vol. 141, no. 2. P. 351-356. doi: 10.1104/pp.106.079160
Polesskaya O. G. Rastitel’naya kletka i aktivnye formy kisloroda [Plant Cell and Reactive Oxygen Species]. Moscow: Knizhnyi Dom Universitet, 2007. 139 p.
Polle A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant physiology. 2001. Vol. 126, no. 1. P. 445-462. doi: 10.1104/pp.126.1.445
Pradedova E. V., Isheeva O. D., Salyaev R. K.Antioxidant defense enzymes in cell vacuoles of red beet roots. Russ. J. Plant Physiol. 2011. Vol. 58, no. 1. P. 363–44. doi: 10.1134/S1021443711010110.
Prasad T. K. Mechanisms of chilling‐induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. The Plant Journal. 1996. Vol. 10, no. 6. P. 1017-1026. doi: 10.1046/j.1365-313x.1996.10061017.x
Price J., Laxmi A., Martin S. K. S., Jang J. C. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. The Plant Cell. 2004. Vol. 16, no. 8. P. 2128-2150. doi: 10.1105/tpc.104.022616
Ramu S. K., Peng H. M., Cook D. R. Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. Molecular plant-microbe interactions. 2002. Vol. 15, no. 6. P. 522-528. doi: 10.1094/mpmi.2002.15.6.522
Rolland F., Baena-Gonzalez E., Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 2006. Vol. 57, P. 675-709. doi: 10.1146/annurev.arplant.57.032905.105441
Rouhier N., Vlamis-Gardikas A., Lillig C. H., Berndt C., Schwenn J. D., Holmgren A., Jacquot J. P. Characterization of the redox properties of poplar glutaredoxin. Antioxidants and Redox Signaling. 2003. Vol. 5, no. 1. P. 15-22. doi: 10.1089/152308603321223504
Saab-Rincon G., Valderrama B. Protein engineering of redox-active enzymes. Antioxidants & redox signaling. 2009. Vol. 11, no. 2. P. 167-192. doi: 10.1089/ars.2008.2098
Sakihama Y., Mano J. I., Sano S., Asada K., Yamasaki H. Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase. Biochemical and Biophysical Research Communications. 2000. Vol. 279, no. 3. P. 949-954. doi: 10.1006/bbrc.2000.4053
Sakihama Y., Yamasaki H. Lipid peroxidation induced by phenolics in conjunction with aluminum ions. Biologia Plantarum. 2002. Vol. 45, no. 2. P. 249-254. doi: 10.1023/a:1015152908241
Scandalios J. G. Oxidative stress and the molecular biology of antioxidant defenses. 1997. no. 04, QP177, S2.
Scandalios J. G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research. 2005. Vol. 38, no. 7. P. 995-1014. doi: 10.1590/s0100-879x2005000700003
Scheibe R., Backhausen J. E., Emmerlich V., Holtgrefe S. Strategies to maintain redox homeostasis during photosynthesis under changing conditions. Journal of Experimental Botany. 2005. Vol. 56, no. 416. P. 1481-1489. doi: 10.1093/jxb/eri181
Schopfer P. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. The Plant Journal. 2001. Vol. 28, no. 6. P. 679-688. doi: 10.1046/j.1365-313x.2001.01187.x
Schürmann P. Redox signaling in the chloroplast: the ferredoxin/thioredoxin system. Antioxidants and Redox Signaling. 2003. Vol. 5, no. 1. P. 69-78. doi: 10.1089/152308603321223559
Skulachev V. P. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 2006. Vol. 11, no. 4. P. 473-485. doi: 10.1007/s10495-006-5881-9
Suzuki N., Mittler R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia plantarum. 2006. Vol. 126, no. 1. P. 45-51. doi: 10.1111/j.0031-9317.2005.00582.x
Takahashi S., Murata N. How do environmental stresses accelerate photoinhibition? Trends in plant science. 2008. Vol. 13, no. 4. P. 178-182. doi: 10.1016/j.tplants.2008.01.005
Takemoto D., Tanaka A., Scott B. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genetics and Biology. 2007. Vol. 44, no. 11. P. 1065-1076. doi: 10.1016/j.fgb.2007.04.011
Tiunov L. A. Mechanisms of Natural Detoxification and Antioxidant Defense. Vestn. Ross. Akad. Med. Nauk. 1995. No. 3. P. 9–13.
Torres M. A., Dangl J. L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current opinion in plant biology. 2005. Vol. 8, no. 4. P. 397-403. doi: 10.1016/j.pbi.2005.05.014
Treutter D. Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters. 2006. Vol. 4, no. 3. P. 147. doi: 10.1007/s10311-006-0068-8
Van Breusegem F., Vranová E., Dat J. F., Inzé D. The role of active oxygen species in plant signal transduction. Plant Science. 2001. Vol. 161, no. 3. P. 405-414. doi: 10.1016/s0168-9452(01)00452-6
Van den Ende W., Valluru R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? Journal of experimental botany. 2008. Vol. 60, no. 1. P. 9-18. doi: 10.1093/jxb/ern297
Vatankhah E., Niknam V., Ebrahimzadeh H. Activity of antioxidant enzyme during in vitro organogenesis in Crocus sativus.Biologia Plantarum. 2010. Vol. 54, no. 3. P. 509-514. doi: 10.1007/s10535-010-0089-9
Vernoux T., Wilson R. C., Seeley K. A., Reichheld J. P., Muroy S., Brown S., Maughan S. C., Cobbett C. S., Van Montagu M., Inzé D., May M. J.,Sung Z. R.The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. The Plant Cell. 2000. Vol. 12, no. 1. P. 97-109. doi: 10.1105/tpc.12.1.97
Volynets A. P. Fenol’nye soedineniya v zhiznedeyatel’nosti rastenii [Phenolic Compounds in Plant Life Activity]. Minsk: Belaruskaya navuka, 2013. 283 p.
Vuolo M. M., Lima V. S., Maróstica Junior M. R. Phenolic Compounds. Bioactive Compounds. 2019. P. 33–50. doi:10.1016/b978-0-12-814774-0.00002-5
Walker J. R., Ferrar P. H. Diphenol oxidases, enzyme-catalysed browning and plant disease resistance. Biotechnology and Genetic Engineering Reviews. 1998. Vol. 15, no. 1. P. 457-498. doi: 10.1080/02648725.1998.10647966
Wang Y., Branicky R., Noë A., Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology. 2018. Vol. 217, no. 6. P. 1915-1928. doi: 10.1083/jcb.201708007
Waszczak C., Carmody M., Kangasjärvi J.Reactive Oxygen Species in Plant Signaling. Annual Review of Plant Biology. 2018. Vol. 69, no. 1. P. 209–236. doi:10.1146/annurev-arplant-042817-040322
Zagoskina N. V. Nazarenk L. V. Aktivnyie formy kisloroda i antioksidantnaya sistema rasteniy. Vestnik MGPU. Seriya «Estestvenny’e nauki». 2016. № 2 (22). P. 9–23.
Zhao H., Ye L., Wang Y., Zhou X., Yang J., Wang J., ... Zou Z. Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Frontiers in plant science. 2016. Vol. 7 doi: 10.3389/fpls.2016.01814
ZHolnin A. V. Obshchaya himiya. Moscow: GEHOTAR-Media. 2012. 400 p.
DOI: http://dx.doi.org/10.17076/eb1312
Ссылки
- На текущий момент ссылки отсутствуют.
© Труды КарНЦ РАН, 2014-2019