4. АТФ-СВЯЗАННЫЕ ТРАНСПОРТНЫЕ БЕЛКИ (ATP-BINDING CASSETTE TRANSPORTERS, ABC). НОМЕНКЛАТУРА, СТРУКТУРА, МОЛЕКУЛЯРНОЕ РАЗНООБРАЗИЕ, ФУНКЦИЯ, УЧАСТИЕ В ФУНКЦИОНИРОВАНИИ СИСТЕМЫ БИОТРАНСФОРМАЦИИ КСЕНОБИОТИКОВ (ОБЗОР)

Лев Павлович Смирнов, Lev Smirnov

Аннотация


ABC транспортеры (ATP-binding cassette, экспортеры), мембранные белки, осуществляющие экструзию из клеток разнообразных субстратов через клеточные мембраны с помощью энергии, получаемой при гидролизе АТФ. В геноме человека закодировано 48 АВС транспортеров, которые распределены по семи семействам: АВСА, АВСВ, АВСС, ABCE, ABCD, ABCF и ABCG. Молекула АВС состоит из двух нуклеотидсвязывающих доменов (NBD) и двух трансмембранных доменов (TMD), осуществляющих перенос субстратов (NBD-TMD-NBD-TMD), либо существует в виде полутранспортера, состоящего из одного NBD и одного TMD, который функционирует как димер. Предполагается, что транспортный цикл АВС является четырехстадийным. Энергия, получаемая при гидролизе АТФ, расходуется на удаление субстрата из молекулы транспортера и возвращения ее в исходное состояние.  У млекопитающих АВС обнаружены, не считая раковых клеток, во многих тканях, таких как, мозг, надпочечники, почки, мозг, легкие, семенники, печень, плацента, кишечник. Субстратами АВС является широкий круг различных соединений как эндо, так и экзогенного происхождения. Ряд АВС участвует в процессах метаболизма ксенобиотиков, активно удаляя как липофильные соединения, которые проходят через плазматические мембраны, так и гидрофильные метаболиты и конъюгаты, которые образовались в I и II фазах биотрансформации. Проведен ряд исследований, в которых показано взаимодействие между ферментом CYP3А4 из группы цитохромов Р450 (фаза I биотрансформации) и транспортером АВСВ1. Обнаружено, что транспортер ABCG2 из печени и кишечника активно экспортирует метаболиты фазы II биотрансформации.

 


Ключевые слова


АТФ-связанные транспортеры; ABC transporters; P-glycoprotein; MDR, BCRP; биотрансформация ксенобиотиков.

Полный текст:

PDF

Литература


Смирнов Л. П., Суховская И. В., Борвинская Е. В. 1. Транспортеры органических анионов (ОАТ). Молекулярное разнообразие, структура, функция, участие в функционировании системы биотрансформации

ксенобиотиков у животных (обзор) // Труды КарНЦ РАН. 2017а. № 12. С. 29–42. doi: 10.17076/eb622

Смирнов Л. П., Суховская И. В., Борвинская Е. В. 2. Транспортеры органических анионов (ОАТР). Свойства, структура, участие в процессах биотрансформации ксенобиотиков у животных (обзор) // Труды КарНЦ РАН. 2017б. № 12. С. 43–56. doi: 10.17076/eb629

Смирнов Л. П. 3. Белки-транспортеры органических катионов семейства SLC22 (OCT-OCTN). Молекулярное разнообразие, структура, функция, участие в функционировании системы межорганной коммуникации у животных (обзор) // Труды КарНЦ РАН.

№ 12. С. 3–19. doi: 10.17076/eb866

Abuznait A. H., Qosa H., Busneva B. A., El Sayed K. A., Kaddoumi A. Olive-oil-derived oleocanthal enhances beta-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies // ACS Chem. Neurosci. 2013. Vol. 4(6). P. 973–982. doi: 10.1021/cn400024q

Aller S. G., Yu J., Ward A., Weng Y., Chittaboina S., Zhuo R., Harrell P. M., Trinh Y. T., Zhang Q., Urbatsch I. L., Chang, G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding // Science. 2009. Vol. 323. P. 1718–1722. doi:

1126/science.1168750

Ambudkar S. V., Kim I. W., Xia D., Sauna Z. E. The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding // FEBS Lett. 2006. Vol. 580.

P. 1049–1055. doi: 10.1016/j.febslet.2005.12.051

Bakos E., Evers R., Szakacs G., Tusnady G. T., Welker E., Szabo K., de Haas M., van Deemter L., Borst P., Varadi A., Sarcadi B. Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain // J. Biol. Chem. 1998. Vol. 273. P. 32167–32175. PMID: 9822694

Barrand M. A., Heppell-Parton A. C., Wright K. A., Rabbitts P. H., Twentyman P. R. A 190-kilodalton protein overexpressed in non-P-glycoprotein-containing multidrug-resistant cells and its relationship to the MRP gene // J. Natl. Cancer Inst. 1994. Vol. 86(2). P. 110–117.

Benet L. Z., Cummins C. L., Wu C. Y. Transporterenzyme interactions: implications for predicting drugdrug interactions from in vitro data // Curr. Drug Metab. 2003. Vol. 4(5). P. 393–398. PMID: 14529371.

Benet L. Z., Cummins C. L., Wu C. Y. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes // Int. J. Pharm. 2004. Vol. 277. P. 3–9. doi: 10.1016/j.ijpharm.2002.12.002

Bircsak K. M., Aleksunes L. M. Interaction of isoflavones with the BCRP/ABCG2 drug transporter // Curr. Drug Metab. 2015. Vol. 16(2). P. 124–140. PMID: 26179608.

Chen J., Lu G., Lin J., Davidson A. L., Quiocho F. A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle // Mol. Cell. 2003. Vol. 12. P. 651–661. PMID: 14527411

Chen M., Abele R., Tampé R. Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP) // J. Biol. Chem. 2004. Vol. 279. P. 46073–46081.

doi: 10.1074/jbc. M404042200

Cole S. P., Bhardwaj G., Gerlach J. H., Mackie J. E., Grant C. E., Almquist K. C., Stewart A. J., Kurz E. U., Duncan A. M., Deeley R. G. Оverexpression of a transporter gene in a multidrug-resistant human lung cancer cell line // Science. 1992. Vol. 258. P. 1650–1654. PMID:

Cvilink V., Lamka J., Skálová L. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths // Drug Metab. Rev. 2009. Vol. 41(1). P. 8–26. doi: 10.1080/03602530802602880

Darwich A. S., Neuhoff S., Jamei M., Rostami-Hodjegan A. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the “Advanced Dissolution, Absorption, Metabolism (ADAM)” model // Curr. Drug Metab. 2010. Vol. 11(9). P. 716–729. PMID: 21189140

Dassa E., Bouige P. The ABC of ABCs: a phylogenetic nd functional classification of ABC systems in living organisms // Res. Microbiol. 2001. Vol. 152. P. 211–229. PMID: 11421270

Dean M., Rzhetsky A., Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily // Genome Res. 2001. Vol. 11. P. 1156–1166. PMID: 11421270

Doyle L. A., Yang W., Abruzzo L. V., Krogmann T., Gao Y., Rishi A. K., Ross D. D. A multidrug resistance transporter from human MCF-7 breast cancer cells // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95(26).

P. 15665–15670. PMID: 9861027

Dawson R. J., Locher K. P. Structure of a bacterial multidrug ABC transporter // Nature. 2006. Vol. 443. P. 180–185. doi: 10.1038/nature05155

Gottesman M. M., Ambudkar S. V. Overview: ABC transporters and human disease // J. Bioenerg. Biomembr. 2001. Vol. 33(6). P. 453–458. PMID: 11804186

Higgins C. F. Multiple molecular mechanisms for multidrug resistance transporters // Nature. 2007. Vol. 446. P. 749–757. doi: 10.1038/nature05630

Higgins C. F., Linton K. J. ABC transporters, an introduction and overview // ABC Proteins / I. B. Holland (ed.). London: Academic Press, 2003. Р. 317–335.

Higgins C. F., Hiles I. D., Salmond G. P., Gill D. R., Downie J. A., Evans I. J., Holland I. B., Gray L., Buckel S. D., Bell A. W. A family of related ATP-binding subunits coupled to many distinct biological processes

in bacteria // Nature. 1986. Vol. 323. P. 448–450. doi:

1038/323448a0

Holland I. B. ABC transporters, mechanisms and biology: an overview // Essays Biochem. 2011. Vol. 50. P. 1–17. doi: 10.1042/BSE0500001

Huls M., Russel F. G., Masereeuw R. The role of ATP binding cassette transporters in tissue defense and organ regeneration // J. Pharmacol. Exp. Ther. 2009. Vol. 328(1). P. 3–9. doi: 10.1124/jpet.107.132225

Ishikawa T. The ATP-dependent glutathione S-conjugate export pump // Trends Biochem. Sci. 1992. Vol. 17, no. 11. P. 463–468. PMID: 1455517

Jiang W., Xu B., Wu B., Yu R., Hu M. UDP-glucuronosyltransferase (UGT) 1A9-overexpressing HeLa cells is an appropriate tool to delineate the kinetic interplay between breast cancer resistance protein (BRCP)

and UGT and to rapidly identify the glucuronide substrates of BCRP // Drug Metab. Dispos. 2012. Vol. 40. P. 336–345. PMID: 22071170

Jones P. M., George A. M. A new structural model for P-glycoprotein // J. Membr. Biol. 1998. Vol. 166. P. 133–147. PMID: 9841738

Jones P. M., George A. M. Symmetry and structure in P-glycoprotein and ABC transporters what goes around comes around // Eur. J. Biochem. 2000. Vol. 267. P. 5298–5305. PMID: 10951188

Jones P. M., O’Mara M. L., George A. M. ABC transporters: a riddle wrapped in mystery inside an enigma // Trends Biochem. Sci. 2009. Vol. 34. P. 520–531. PMID: 10951188

Jones P. M., George A. M. A reciprocating twinchannel model for ABC transporters // Q Rev. Biophys. 2014. Vol. 47(3). P. 189–220. doi: 10.1017/S0033583514000031

Johnstone R. W., Ruefli A. A., Tainton K. M., Smyth M. J. A role for P-glycoprotein in regulating cell death // Leukemia Lymphoma. 2000a. Vol. 38. P. 1–11. doi: 10.3109/10428190009060314

Johnstone R. W., Ruefli A. A., Smyth M. J. Multiple physiological functions for multidrug transporter P-glycoprotein? // Trends Biochem. Sci. 2000b. Vol. 25. P. 1–6.

Juliano R. L., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants // Biochim. Biophys. Acta. 1976. Vol. 455. P. 152–162. PMID: 990323

Karpowich N., Martsinkevich O., Millen L., Yuan Y. R., Dai P. L., MacVey K., Thomas P. J., Hunt J. F. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC

transporter // Structure. 2001. Vol. 9. P. 571–586.

Kerr I. D. Structure and association of ATP-binding cassette transporter nucleotide-binding domains // Biochim. Biophys. Acta. 2002. Vol. 1561. P. 47–64. PMID: 11988180

Kispal G., Csere P., Guiard B., Lill R. The ABC transporter Atm1p is required for mitochondrial iron homeostasis // FEBS Lett. 1997. Vol. 418. P. 346–350. PMID: 9428742

Kusuhara H., Sugiyama Y. Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 1) // Drug Disc. Today. 2001. Vol. 6. P. 150–156. PMID: 11165188

Mosser J., Douar A. M., Sarde C. O., Kioschis P., Feil R., Moser H., Poustka A. M., Mandel J. L., Aubourg P. Putative X-lined adrenoleukodystrophy gene shares unexpected homology with ABC transporters // Nature. 1993. Vol. 361. P. 726–730. doi:

1038/361726a0

Lamer M. H., Winterwerp H. H., Sixma T. K. The alternating ATPase domains of MutS control DNA mismatch repair // EMBO J. 2003. Vol. 22. P. 746–756. doi: 10.1093/emboj/cdg064

Liu Y., Eisenberg D. 3D domain swapping: as domains continue to swap // Protein Sci. 2002. Vol. 11(6). P. 1285–1299. doi: 10.1110/ps.0201402

Löscher W., Potschka H. Blood-Brain Barrier Active Efflux Transporters: ATP-Binding Cassette Gene Family // NeuroRx. 2005. Vol. 2. P. 86–98. doi: 10.1602/neurorx.2.1.86

Locher K. P. Structure and mechanism of ATP-binding cassette transporters // Philos. Trans. R. Soc. Lond.: Biol. Sci. 2009. Vol. 364(1514). P. 239–245.

Loo T. W., Clarke D. M. Molecular dissection of the human multidrug resistance P-glycoprotein // Biochem. Cell Biol. 1999. Vol. 77. P. 11–23. PMID: 10426282

Mao Q., Unadkat J. D. Role of the breast cancer resistance protein (ABCG2) in drug transport // AAPS J. 2005. Vol. 7. P. E118–133. doi: 10.1208/aapsj070112

Martin C., Berridge G., Mistry P., Higgins C., Charlton P., Callaghan R. Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis // Biochemistry. 2000. Vol. 39. P. 11901–11906.

PMID: 11009602

Natarajan K., Xie Y., Baer M. R., Ross D. D. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance // Biochem. Pharmacol. 2012. Vol. 83. P. 1084–103. doi: 10.1016/j.bcp.2012.01.002

Ni Z., Bikadi Z., Rosenberg M. F., Mao Q. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2) // Curr. Drug Metab. 2010. Vol. 11. P. 603–617. PMID: 20812902

Orelle C., Ayvaz T., Everly R. M., Klu C. S., Davidson A. L. Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter // Proc. Natl. Acad. Sci. USA. 2008. Vol. 105. Р. 12837–12842. doi: 10.1073/pnas.0803799105

Oswald C., Holland I. B., Schmitt L. The motor domains of ABC-transporters. What can structures tell us // Naunyn-Schmiederberg’s Arch Pharmacol. 2006. Vol. 372. P. 385–399. doi: 10.1007/s00210-005-0031-4

Pahnke J., Fröhlich C., Krohn M., Schumacher T., Paarmann K. Impaired mitochondrial energy production and ABC transporter function-A crucial interconnection in dementing proteopathies of the brain // Mech Ageing Dev. 2013. Vol. 134(10). P. 506–515. doi: 10.1016/j. mad

Smith P. C., Karpowich N., Millen L., Moody J. E., Rosen J., Thomas P. J., Hunt J. F. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer // Mol. Cell. 2002.

Vol. 10. P. 139–149.

Stacy A. E., Jansson P. J., Richardson D. R. Molecular pharmacology of ABCG2 and its role in chemoresistance // Mol. Pharmacol. 2013. Vol. 84. P. 655–669. doi: 10.1124/mol.113.088609

Stieger B., Meier P. J. Bile acid and xenobiotic transporters in liver // Curr. Opin. Cell Biol. 1998. Vol. 10. P. 462–467. PMID: 9719866

Szakács G., Váradi A., Özvegy-Laczka C., Sarkadi B. The role of ABC transporters in drug absorbtion, distribution, metabolism, excretion and toxicity (ADME-Tox) // Drug Discovery Today. Vol. 13, no. 9/10. P. 279–393. doi: 10.1016/j.drudis.2007.12.010

Theodoulou F. L., Kerr I. D. ABC transporter research: going strong 40 years on // Biochem. Soc. Trans. 2015. Vol. 43. P. 1033–1040. doi: 10.1042/BST20150139

van Veen H. W., Margolles A., Muller M., Higgins C. F., Konings W. N. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism // EMBO J. 2000. Vol. 19. P. 2503–2514. doi: 10.1093/emboj/19.11.2503

Vetter I. R., Wittinghofer A. Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer // Q. Rev. Biophys. 1999. Vol. 32. P. 1–56.

Wang H., Lee E. W., Cai X., Ni Z., Zhou L., Mao Q. Membrane topology of the human breast cancer resistance protein (BCRP/ABCG2) determined by epitope insertion and immunofluorescence // Biochemistry. 2008. Vol. 47. P. 13778–13787. doi: 10.1021/bi801644v

Yang Z., Zhu W., Gao S., Yin T., Jiang W., Hu M. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein // Drug Metab. Dispos. 2012. Vol. 40. P. 1883–1893. doi:

1124/dmd.111.043901

Zaitseva J., Oswald C., Jumpertz T., Jenewein S., Wiedenmann A., Holland I. B., Schmitt L. A structural analysis of asymmetry required for catalytic activity of an ABC–ATPase domain dimer // EMBO J. 2006. Vol. 25. P. 3432–3443. doi: 10.1038/sj.emboj.7601208

Zhou Z., Wang X., Liu H. Y., Zou X., Li M., Hwang T. C. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetic // J. Gen. Physiol. 2006. Vol. 128. P. 413–422. doi: 10.1085/jgp.200609622

Zolnerciks J. K., Andress E. J., Nicolaou M., Linton K. J. Structure of ABC transporters // Essays Biochem. 2011. Vol. 50. P. 43–61. doi: 10.1042/BSE0500043

References in English

Smirnov L. P., Sukhovskaya I. V., Borvinskaya E. V. 1. Transportery organicheskikh anionov (OAT). Molekulyarnoe raznoobrazie, struktura, funktsiya, uchastie v funktsionirovanii sistemy biotransformatsii ksenobiotikov u zhivotnykh (obzor) [1. Organic anion transporters. Molecular diversity, structure, contribution to the functioning of the xenobiotic biotransformation system in animals (a review)]. Trudy KarNTs RAN [Trans. KarRC RAS]. 2017a. No. 12. P. 28–42. doi: 10.17076/eb622

Smirnov L. P., Sukhovskaya I. V., Borvinskaya E. V. 2. Transportery organicheskikh anionov (OATR). Svoistva, struktura, uchastie v protsessakh biotransformatsii ksenobiotikov u zhivotnykh (obzor) [2. Organic anion transporters of the SLCO Family. Properties, structure, contribution to the functioning of the xenobiotic biotransformation system in animals (a review)]. Trudy KarNTs RAN [Trans. KarRC RAS]. 2017b. No. 12. P. 43–56. doi: 10.17076/eb629

Smirnov L. P. 3. Belki-transportery organicheskikh kationov semeistva SLC22 (OCT-OCTN). Molekulyarnoe raznoobrazie, struktura, funktsiya, uchastie v funktsionirovanii sistemy mezhorgannoi kommunikatsii u zhivotnykh (obzor) [3. Organic cation transporters f the SLC22

family. Molecular diversity, structure, function, partnership in the functioning of the interorgan communication system of animals (a review)]. Trudy KarNTs RAN [Trans. KarRC RAS]. 2018. No. 12. P. 3–19. doi: 10.17076/eb866

Abuznait A. H., Qosa H., Busneva B. A., El Sayed K. A., Kaddoumi A. Olive-oil-derived oleocanthal enhances beta-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies. ACS Chem. Neurosci. 2013. Vol. 4(6). P. 973–982. doi: 10.1021/cn400024q

Aller S. G., Yu J., Ward A., Weng Y., Chittaboina S., Zhuo R., Harrell P. M., Trinh Y. T., Zhang Q., Urbatsch I. L., Chang G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009. Vol. 323. P. 1718–1722. doi: 10.1126/science.1168750

Ambudkar S. V., Kim I. W., Xia D., Sauna Z. E. The A-loop, a novel conserved aromatic acid subdomain upstream of the WalkerA motif in ABC transporters, is critical for ATP binding. FEBS Lett. 2006. Vol. 580.

P. 1049–1055. doi: 10.1016/j.febslet.2005.12.051

Bakos E., Evers R., Szakacs G., Tusnady G. T., Welker E., Szabo K., de Haas M., van Deemter L., Borst P., Varadi A., Sarcadi B. Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. J. Biol. Chem. 1998. Vol. 273. P. 32167–32175.

PMID: 9822694

Barrand M. A., Heppell-Parton A. C., Wright K. A., Rabbitts P. H., Twentyman P. R. A 190-kilodalton protein overexpressed in non-P-glycoprotein-containing multidrug-resistant cells and its relationship to the MRP gene. J. Natl. Cancer Inst. 1994. Vol. 86(2). P. 110–117.

Benet L. Z., Cummins C. L., Wu C. Y. Transporterenzyme interactions: implications for predicting drugdrug interactions from in vitro data. Curr. Drug Metab.2003. Vol. 4(5). P. 393–398. PMID: 14529371

Benet L. Z., Cummins C. L., Wu C. Y. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int. J. Pharm. 2004. Vol. 277. P. 3–9. doi: 10.1016/j.ijpharm.2002.12.002

Bircsak K. M., Aleksunes L. M. Interaction of isoflavones with the BCRP/ABCG2 drug transporter. Curr. Drug Metab. 2015. Vol. 16(2). P. 124–140. PMID: 26179608

Chen J., Lu G., Lin J., Davidson A. L., Quiocho F. A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell. 2003. Vol. 12. P. 651–661. PMID: 14527411

Chen M., Abele R., Tampé R. Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP). J. Biol. Chem. 2004. Vol. 279. P. 46073–46081.

doi: 10.1074/jbc. M404042200

Cole S. P., Bhardwaj G., Gerlach J. H., Mackie J. E., Grant C. E., Almquist K. C., Stewart A. J., Kurz E. U., Duncan A. M., Deeley R. G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992. Vol. 258. P. 1650–1654. PMID:

Cvilink V., Lamka J., Skálová L. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminthes. Drug Metabol. Rev. 2009. Vol. 41(1). P. 8–26. doi: 10.1080/03602530802602880

Darwich A. S., Neuhoff S., Jamei M., Rostami-Hodjegan A. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the “Advanced

Dissolution, Absorption, Metabolism (ADAM)” model. Curr. Drug Metab. 2010. Vol. 11(9). P. 716–729. PMID: 21189140

Dassa E., Bouige P. The ABC of ABCs: a phylogenetic nd functional classification of ABC systems in living organisms. Res. Microbiol. 2001. Vol. 152. P. 211–229. PMID: 11421270

Dean M., Rzhetsky A., Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001. Vol. 11. P. 1156–1166. PMID: 11421270

Doyle L. A., Yang W., Abruzzo L. V., Krogmann T., Gao Y., Rishi A. K., Ross D. D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA. 1998. Vol. 95(26). P. 15665–15670. PMID: 9861027

Dawson R. J., Locher K. P. Structure of a bacterial multidrug ABC transporter. Nature. 2006. Vol. 443. P. 180–185. doi: 10.1038/nature05155

Gottesman M. M., Ambudkar S. V. Overview: ABC transporters and human disease. J. Bioenerg. Biomembr. 2001. Vol. 33(6). P. 453–458. PMID: 11804186

Higgins C. F. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007. Vol. 446. P. 749–757. doi: 10.1038/nature05630

Higgins C. F., Linton K. J. ABC transporters, an introduction and overview. ABC Proteins. I. B. Holland (ed.). London: Academic Press, 2003. Р. 317–335.

Higgins C. F., Hiles I. D., Salmond G. P., Gill D. R., Downie J. A., Evans I. J., Holland I. B., Gray L., Buckel S. D., Bell A. W. A family of related ATP-binding subunits coupled to many distinct biological processesin bacteria. Nature. 1986. Vol. 323. P. 448–450. doi: 10.1038/323448a0

Holland I. B. ABC transporters, mechanisms and biology: an overview. Essays Biochem. 2011. Vol. 50. P. 1–17. doi: 10.1042/BSE0500001

Huls M., Russel F. G., Masereeuw R. The role of ATP binding cassette transporters in tissue defense and organ regeneration. J. Pharmacol. Exp. Ther. 2009. Vol. 328(1). P. 3–9. doi: 10.1124/jpet.107.132225

Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 1992. Vol. 17, no. 11. P. 463–468. PMID: 1455517

Jiang W., Xu B., Wu B., Yu R., Hu M. UDP-glucuronosyltransferase (UGT) 1A9-overexpressing HeLa cells is an appropriate tool to delineate the kinetic interplay between breast cancer resistance protein (BRCP) and UGT and to rapidly identify the glucuronide substrates of BCRP. Drug Metab. Dispos. 2012. Vol. 40. P. 336–345. PMID: 22071170

Jones P. M., George A. M. A new structural model for P-glycoprotein. J. Membr. Biol. 1998. Vol. 166. P. 133–147. PMID: 9841738

Jones P. M., George A. M. Symmetry and structure in P-glycoprotein and ABC transporters what goes round comes around. Eur. J. Biochem. 2000. Vol. 267. P. 5298–5305. PMID: 10951188

Jones P. M., O’Mara M. L., George A. M. ABC transporters: a riddle wrapped in mystery inside an enigma. Trends Biochem. Sci. 2009. Vol. 34. P. 520–531. PMID: 10951188

Jones P. M., George A. M. A reciprocating twinchannel model for ABC transporters. Q. Rev. Biophys. 2014. Vol. 47(3). P. 189–220. doi: 10.1017/S0033583514000031

Johnstone R. W., Ruefli A. A., Tainton K. M., Smyth M. J. A role for P-glycoprotein in regulating cell death. Leukemia Lymphoma. 2000a. Vol. 38. P. 1–11. doi: 10.3109/10428190009060314

Johnstone R. W., Ruefli A. A., Smyth M. J. Multiple physiological functions for multidrug transporter P-glycoprotein? Trends Biochem. Sci. 2000b. Vol. 25. P. 1–6.

Juliano R. L., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta. 1976. Vol. 455. P. 152–162. PMID: 990323

Kerr I. D. Structure and association of ATP-binding cassette transporter nucleotide-binding domains. Biochim. Biophys. Acta. 2002. Vol. 1561. P. 47–64. PMID: 11988180

Kispal G., Csere P., Guiard B., Lill R. The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Lett. 1997. Vol. 418. P. 346–350. PMID: 9428742

Kusuhara H., Sugiyama Y. Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 1). Drug Disc. Today. 2001. Vol. 6. P. 150–156. PMID: 11165188

Mosser J., Douar A. M., Sarde C. O., Kioschis P., Feil R., Moser H., Poustka A. M., Mandel J. L., Aubourg P. Putative X-lined adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature. 1993. Vol. 361. P. 726–730. doi: 10.1038/361726a0

Lamer M. H., Winterwerp H. H., Sixma T. K. The alternating ATPase domains of MutS control DNA mismatch repair. EMBO J. 2003. Vol. 22. P. 746–756. doi: 10.1093/emboj/cdg064

Liu Y., Eisenberg D. 3D domain swapping: as domains continue to swap. Protein Sci. 2002. Vol. 11. P. 1285–1299.

Liu Y., Eisenberg D. 3D domain swapping: as domains continue to swap. Protein Sci. 2002. Vol. 11(6). P. 1285–1299. doi: 10.1110/ps.0201402

Löscher W., Potschka H. Blood-Brain Barrier Active Efflux Transporters: ATP-Binding Cassette Gene Family. NeuroRx. 2005. Vol. 2. P. 86–98. doi:

1602/neurorx.2.1.86

Locher K. P. Structure and mechanism of ATP-binding cassette transporters. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2009. Vol. 364(1514). P. 239–245.

Loo T. W., Clarke D. M. Molecular dissection of the human multidrug resistance P-glycoprotein. Biochem. Cell Biol. 1999. Vol. 77. P. 11–23. PMID: 10426282

Mao Q., Unadkat J. D. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J. 2005. Vol. 7. P. E118–133. doi: 10.1208/aapsj070112

Martin C., Berridge G., Mistry P., Higgins C., Charlton P., Callaghan R. Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis. Biochemistry. 2000. Vol. 39. P. 11901–11906.

PMID: 11009602

Natarajan K., Xie Y., Baer M. R., Ross D. D. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem. Pharmacol. 2012. Vol. 83. P. 1084–1103. doi: 10.1016/j.bcp.2012.01.002

Ni Z., Bikadi Z., Rosenberg M. F., Mao Q. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr. Drug Metab. 2010. Vol. 11. P. 603–617. PMID: 20812902

Orelle C., Ayvaz T., Everly R. M., Klu C. S., Davidson A. L. Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. Proc. Natl. Acad. Sci. USA. 2008. Vol. 105. Р. 12837–12842. doi: 10.1073/pnas.0803799105

Oswald C., Holland I. B., Schmitt L. The motor domains of ABC-transporters. What can structures tell us. Naunyn-Schmiederberg’s Arch Pharmacol. 2006. Vol. 372. P. 385–399. doi: 10.1007/s00210-005-00314

Pahnke J., Fröhlich C., Krohn M., Schumacher T., Paarmann K. Impaired mitochondrial energy production and ABC transporter function-A crucial interconnection in dementing proteopathies of the brain. Mech. Ageing Dev. 2013. Vol. 134(10). P. 506–515. doi: 10.1016/j.mad

Smith P. C., Karpowich N., Millen L., Moody J. E., Rosen J., Thomas P. J., Hunt J. F. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell. 2002. Vol. 10.

P. 139–149.

Stacy A. E., Jansson P. J., Richardson D. R. Molecular pharmacology of ABCG2 and its role in chemoresistance. Mol. Pharmacol. 2013. Vol. 84. P. 655–669. doi: 10.1124/mol.113.088609

Stieger B., Meier P. J. Bile acid and xenobiotic transporters in liver. Curr. Opin. Cell Biol. 1998. Vol. 10. P. 462–467. PMID: 9719866

Szakács G., Váradi A., Özvegy-Laczka C., Sarkadi B. The role of ABC transporters in drug absorbtion, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discovery Today. Vol. 13, no. 9/10. P. 279–393. doi: 10.1016/j.drudis.2007.12.010

Theodoulou F. L., Kerr I. D. ABC transporter research: going strong 40 years on. Biochem. Soc. Trans. 2015. Vol. 43. P. 1033–1040. doi: 10.1042/BST20150139

van Veen H. W., Margolles A., Muller M., Higgins C. F., Konings W. N. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J. 2000. Vol. 19. P. 2503–2514. doi: 10.1093/emboj/19.11.2503

Wang H., Lee E. W., Cai X., Ni Z., Zhou L., Mao Q. Membrane topology of the human breast cancer resistance protein (BCRP/ABCG2) determined by epitope insertion and immunofluorescence. Biochemistry. 2008. Vol. 47. P. 13778–13787. doi: 10.1021/bi801644v

Yang Z., Zhu W., Gao S., Yin T., Jiang W., Hu M. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab. Dispos. 2012. Vol. 40. P. 1883–1893. doi:

1124/dmd.111.043901

Zaitseva J., Oswald C., Jumpertz T., Jenewein S., Wiedenmann A., Holland I. B., Schmitt L. A structural analysis of asymmetry required for catalytic activity of an ABC–ATPase domain dimer. EMBO J. 2006. Vol. 25. P. 3432–3443. doi: 10.1038/sj. emboj. 7601208

Zhou Z., Wang X., Liu H. Y., Zou X., Li M., Hwang T. C. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetic. J. Gen. Physiol. 2006. Vol. 128. P. 413–422. doi: 10.1085/jgp.200609622

Zolnerciks J. K., Andress E. J., Nicolaou M., Linton K. J. Structure of ABC transporters. Essays Biochem. 2011. Vol. 50. P. 43–61. doi: 10.1042/BSE0500043




DOI: http://dx.doi.org/10.17076/eb1044

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019