Геодинамическая интерпретация объемной модели глубинного строения Свекофеннского аккреционного орогена

Михаил Вениаминович Минц, Mikhail Mints

Аннотация


Результаты нашего исследования изложены в двух взаимосвязанных последовательных публикациях. В статье «Объемная модель глубинного строения Свекофеннского аккреционного орогена по данным МОВ-ОГТ, МТЗ и плотностного моделирования» (М. В. Минц, Е. Ю. Соколова и рабочая группа ЛАДОГА) представлена объемная модель глубинного строения позднепалеопротерозойского Свекофеннского аккреционного орогена. Модель базируется на скоординированных данных геологического картирования, сейсморазведки в отраженных волнах по профилям FIRE-2-2a-1 и FIRE-3-3a, использует сечения 3-мерной плотностной модели коры, результаты магнитотеллурических исследований по профилю Выборг-Суоярви в Cеверном Приладожье и материалы ранее проведенных финскими исследователями магнитотеллурических исследований в Южной Финляндии. В настоящей статье эти результаты использованы в качестве отправной точки для развития эволюционной модели и определения места Свекофеннского орогена в строении и истории палеопротерозойского Лавро-Русского внутриконтинентального орогена. Палеопротерозойский орогенез захватил преобладающую часть Лавроскандии – палеоконтинента, объединявшего Северо-Американский и Восточно-Европейский кратоны. Обсуждение особенностей строения коры и эволюции Лавро-Русского орогена приводит к заключению о том, что зарождение и эволюция этого орогена состояли в причинной связи с развитием палеопротерозойского суперплюма, инициировавшего, в свою очередь, процессы тектоно-плитного типа. Эволюция Лавро-Русского орогена включает три периода интенсивного развития (~2,5; 2,2–2,1 и 1,95–1,87 млрд лет). В осевой зоне внутриконтинентального орогена возник Свекофеннский – Пре-Лабрадорский океан, при закрытии которого вдоль обрамляющих континентальных окраин были сформированы аккреционные орогены Свекофеннский и Пре-Лабрадорский. 


Ключевые слова


Свекофеннский ороген; сейсморазведка отраженных волн; магнитотеллурическое зондирование; объемная модель коры; Фенноскандинавский щит; палеопротерозой; модель эволюции; геодинамика.

Полный текст:

PDF

Литература


Литература

Минц М. В. Палеопротерозойский суперконтинент: возникновение и эволюция аккреционных и коллизионных орогенов (на примере северных кратонов) // Геотектоника. 2007. № 4. C. 3–29. Минц М. В. Объемная модель глубинного строения раннедокембрийской коры Восточно-Европейского кратона, палеогеодинамические следствия // Геотектоника. 2011. № 4. C. 3–29. doi: 10.1134/ S0016852111040054

Минц М. В. Сейсмические образы коро-мантийной границы как отражение геодинамики докембрийского корообразования // Геофизические исследования. 2016. Т. 17, № 1. С. 65–82.

Минц М. В. Палеопротерозой-фанерозойская история Атлантической зоны: уникальный пример взаимодействия плюм-тектоники и плейт-тектоники // Тектоника современных и древних океанов и их окраин: Матер. XLIX Тектонического совещания, посвящ. 100-летию акад. Ю. М. Пущаровского / Ред. К. Е. Дегтярев. М.: ГЕОС, 2017. Т. 2. С. 19–23.

Минц М. В., Сулейманов А. К., Бабаянц П. С., Белоусова Е. А., Блох Ю. И., Богина М. М., Буш В. А., Докукина К. А., Заможняя Н. Г., Злобин В. Л., Каулина Т. В., Конилов А. Н., Михайлов В. О., Натапов Л. М., Пийп В. Б., Ступак В. М., Тихоцкий С. А., Трусов А. А., Филиппова И. Б., Шур Д. Ю. Глубинное строение, эволюция и полезные ископаемые раннедокембрийского фундамента Восточно-Европейской платформы: Интерпретация материалов по опорному профилю 1-ЕВ, профилям 4В и Татсейс. М.: Геокарт; ГЕОС, 2010. Т. 1. 408 с.; т. 2. 400 с.

Минц М. В., Соколова Е. Ю., рабочая группа ЛАДОГА. Объемная модель глубинного строения Свекофеннского аккреционного орогена по данным МОВОГТ, МТЗ и плотностного моделирования // Труды КарНЦ РАН. 2017. URL: journals.krc.karelia.ru/ doi: 10.17076/geo656

Соколова Е. Ю., Голубцова Н. С., Ковтун А. А., Куликов В. А, Лозовский И. Н., Пушкарев П. Ю., Ро китянский И. И., Таран Я. В., Яковлев А. Г. Результаты синхронных магнитотеллурических и магнито- вариационных зондирований в районе Ладожской аномалии электропроводности // Геофизика. 2016. № 1. C. 48–64.

Соколова Е. Ю. и рабочая группа ЛАДОГА. Эксперимент синхронного профильного МТ/МВ зондирования Ладожской аномалии электропроводности: новые свидетельства о структуре юго-востока Балтийского щита // Глубинное строение и геодинами- ка Приладожья: Матер. Всерос. конф. с междунар. участием. ИГ КарНЦ РАН. Петрозаводск: КарНЦ РАН, 2017. С. 204–214.

Andersson U. B., Högdahl K., Sjöström, Bergman S. Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U – Pb geochronology // Geol. Mag. 2006. Vol. 143, no. 5. P. 679–697. doi: 10.1017/ S0016756806002494

Andersson U. B., Begg G. C., Griffin W. L., Högdahl K. Ancient and juvenile components in the continental crust and mantle: Hf isotopes in zircon from Svecofennian magmatic rocks and rapakivi granites in Sweden // Lithosphere. 2011. Vol. 3, no. 6. P. 409–419. doi: 10.1130/L162.1

Aspler L. B., Chiarenzelli J. R. Two Neoarchean supercontinents? Evidence from the Paleoproterozoic // Sedimentary Geol. 1998. Vol. 120. P. 75–104.

Aspler L. B., Chiarenzelli J. R., Cousens B. L., Mc Nicoll V. J., Davis W. J. Paleoproterozoic intracratonic basin processes, from breakup of Kenorland to assembly of Laurentia: Hurwitz Basin, Nunavut, Canada // Sediment. Geol. 2001. Vol. 141/142. P. 287–318.

Bickford M. E., Mock T. D., Steinhart III W. E., Col lerson K. D., Lewry J. F. Origin of the Archean Sask craton and its extent within the Trans-Hudson orogen: evidence from Pb and Nd isotopic compositions of basement rocks and post-orogenic intrusions // Can. J. of Earth Sci. 2005. Vol. 42 (4). P. 659–684. doi: 10.1139/ e04-064

Buchan K. L., Mortensen J. K., Card K. D., Percival J. A. Paleomagnetism and U – Pb geochronology of diabase dyke swarms of Minto block, Superior Province, Quebec, Canada // Can. J. Earth Sci. 1998. Vol. 35. P. 1054–1069. doi: 10.1139/e98–054

Chiarenzelli J. R., Aspler L. B., Villeneuve M., Lewry J. F. Early Proterozoic evolution of the Saskatchewan Craton and its allochthonous cover, Trans-Hudson Orogen // J. Geol. 1998. Vol. 106. P. 247–267.

Collier J. S., Buhl P., Tome M., Watts A. B. Moho and lower crustal reflectivity beneath a young rift basin: results from a two-ship, wide-aperture seismic-reflection experiment in the Valencia Trough (western Mediterranean) // Geophys. J. Inter. 1994. Vol. 118. P. 159–180.

Dahl P. S., Hamilton M. A., Wooden J. L., Foland K. A., Frei R., McCombs J. A., Holm D. K. 2480 Ma mafic magmatism in the northern Black Hills, South Dakota: a new link connecting the Wyoming and Superior cratons // Can. J. of Earth Sci. 2006. Vol. 43 (10). P. 1579–1600. doi: 10.1139/e06-066

De Wit M., Tinker J. Crustal structures across the central Kaapvaal craton from deep-seismic reflection data // South African J. of Geol. 2004. Vol. 107. P. 185– 206. doi: 10.2113/107.1-2.185

Gala M. G., Symons D. T. A., Palmer H. C. Geotectonics of the Hanson Lake Block, Trans-Hudson Orogen, Central Canada: A preliminary paleomagnetic report // Precambrian Research. 1998. Vol. 90. P. 85–101. doi: 10.1016/S0301-9268(98)00034-5

Glaznev V. N., Mints M. V., Muravina O. M., Raevsky A. B., Osipenko L. G. Complex geological-geo physical 3D model of the crust in the southeastern Fennoscandian Shield: nature of density layering of the crust and the crust – mantle boundary // Geodynamics and Tectonophysics. 2015. Vol. 6, no. 2. P. 133–170. doi: 10.5800/GT-2015-6-2-0176

Goodwin A. M. Rooted Precambrian ring-shields: growth, alignment, and oscillation // Am. J. Sci. 1985. Vol. 285. P. 481–531. doi: 10.2475/ajs.285.6.481

Gower C. F., Krogh T. A. U-Pb geochronological review of the Proterozoic history of the eastern Grenville Province // Can J. of Earth Sci. 2002. Vol. 39. P. 795– 829. doi: 10.1139/e01–090

Gower C. F., Ryan A. B., Rivers T. Mid-Proterozoic Laurentia-Baltica: an overview of its geological evolution and a summary of the contributions made by this volume. In: Mid-Proterozoic Laurentia-Baltica / Gower C. F., Rivers T. and Ryan A. B. (Eds.) // Geol. Assoc. 1990. Canada Sp. Paper 38. P. 1–20.

Halls H. C., Heaman L. M. The paleomagnetic significance of new U-Pb age data from the Molson Dyke Swarm, Cauchon Lake Area, Manitoba // Can J. Earth Sci. 2000. Vol. 37. P. 957–966. doi: 10.1139/e00-010

Hanski E. J., Huhma H., Lehtonen M. I., Ras tas P. 2.0 Ga old oceanic crust in northern Finland / Eds. E. Hanski and J. Vuollo. International Ophiolite Symposium and Field Excursion, Abstracts: Geological Survey of Finland Special Paper 26, 1998. 24 p. Hoffman P. United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia // Ann. Rev. Earth Planet. Sci. 1988. Vol. 16. P. 543–604.

Hoffman P. F. Precambrian Geology and Tectonic History of North America: An Overview / Eds. A. W. Bally, A. R. Palmer // The Geology of North America. Geol. Soc. Amer. 1989. Vol. A. P. 447–512.

Janik T., Kozlovskaya E., Heikkinen P., Yliniemi J., Silvennoinen H. Evidence for preservation of crustal root beneath the Proterozoic Lapland-Kola orogen (northern Fennoscandian shield) derived from P and S wave velocity models of POLAR and HUKKA wide-angle reflection and refraction profiles and FIRE4 reflection transect // J. of Geophys. Res. 2009. Vol. 114, B06308. doi: 10.1029/2008JB005689

Kähkönen Y., Lahtinen R., Nironen M. Palaeoproterozoic supracrustal belts in southwestern Finland / Ed. M. Pajunen. High Temperature – Low Pressure Metamorphism and Deep Crustal Structures. Meeting of International Geoscience Programme (IGCP) Project 304 “Deep Crustal Processes” in Finland // Geological Survey of Finland Guide 37. 1994. P. 43–47.

Kontinen A. An early Proterozoic ophiolite – the Jormua mafic-ultramafic complex, northeastern Finland // Precambrian Research. 1987. Vol. 35. P. 313–341.

Kontinen A., Paavola J. A preliminary model of the crustal structure of the eastern Finland Archaean complex between Vartius and Vieremä, based on constraints from surface geology and Fire 1 seismic survey / Eds. I. T. Kukkonen, R. Lahtinen. Finnish Reflection Experiment FIRE 2001–2005: Geological Survey of Finland Special Paper 43. 2006. P. 223–240.

Korja A., Lahtinen R., Heikkinen P., Kukkonen I. N. and FIRE Working Group. A geological interpretation of the upper crust along FIRE 1. In: Finnish Reflection Experiment FIRE 2001–2005. Geological Survey of Finland, Special paper 43. 2006a. P. 45–76.

Korja A., Lahtinen R., Nironen M. The Svecofennian orogen: a collage of microcontinents and island arcs // In: European Lithosphere Dynamics / Eds. D. G. Gee and R. A. Stephenson. Geological Society, London, Memoirs. 2006b. Vol. 32. P. 561–578.

Korja T., Engels M., Zhamaletdinov A. A., Kov tun A. A., Palshin N. A., Smirnov M. Yu., Tokarev A. D., Asming V. E., Vanyan L. L., Vardaniants I. L. and the BEAR Working Group. Crustal conductivity in Fennoscandia – a compilation of a database on crustal conductance in the Fennoscandian Shield // Earth Planets Space. 2002. Vol. 54. P. 535–558.

Krawczyk C. M., Stiller M., DEKORP – BASIN Re search Group. Reflection seismic constraints on Paleozoic crustal structure and Moho beneath the NE German Basin // Tectonophysics. 1999. Vol. 314. P. 241–253. doi: 10.1016/S0040-1951(99)00246-2

Kukkonen I. T., Kuusisto M., Lehtonen M., Pelto nen P. Delamination of eclogitized lower crust: Control on the crust – mantle boundary in the central Fennoscandian shield // Tectonophysics. 2008. Vol. 457. P. 111–127. doi: 10.1016/j.tecto.2008.04.029

Kukkonen I. T., Lahtinen R. Finnish reflection experiment FIRE 2001–2005 // Geological Survey of Finland, Specal Paper. 2006. Vol. 43. 247 p.

Lahtinen R., Korja A., Nironen M. Paleoproterozoic tectonic evolution / Eds. M. Lehtinen, P. A. Nurmi, O. T. Rämö. Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian Shield. Elsevier B. V., Amsterdam. 2005. P. 481–532.

Lahtinen R., Korja A., Nironen M., Heikkinen P. Palaeoproterozoic accretionary processes in Fennoscandia / Eds. P. A. Cawood, A. Kröner. Earth Accretionary Systems in Space and Time. The Geological Society, London, Special Publications. 2009. Vol. 318. P. 237– 256. doi: 10.1144/SP318.8

Mints M. V. Granulite-gneiss belts and areals of the East European craton (regional and global patterns of tectonic and geodynamic evolution of the granulitegneiss complexes) // Geotectonics. 2014. Vol. 48. P. 496–522.

Mints M. V., Eriksson P. G. Secular changes in relationships between plate-tectonic and mantle-plume engendered processes during Precambrian time // Geodynamics & Tectonophysics. 2016. Vol. 7 (2). P. 173–232. doi: 10.5800/GT-2016-7-2-0203

Mints M. V., Suleimanov A. K., Zamozhniaya N. G., Stupak V. M. Chapter 12. Study of the basement of the Russian European Platform based on a system of geotraverses and CMP profiles: 3D models of the Early Precambrian crust in key regions // In: Mints M. V., Dokukina K. A., Konilov A. N., Philippova I. B., Zlobin V. L., Babayants P. S., Belousova E. A., Blokh Yu. I., Bogina M. M., Bush W. A., Dokukin P. A., Kaulina T. V., Natapov L. M., Piip V. B., Stupak V. M., Suleimanov A. K., Trusov A. A., Van K. V., Zamozhniaya N. G. East European Craton: Early Precambrian history and 3D models of deep crustal structure. The Geological Society of America Special Paper 510. 2015. P. 265–300. doi: 10.1130/2015.2510(12)

Nironen M., Elliott B. A., Rämö O. T. 1.88–1.87 Ga post-kinematic intrusions of the Central Finland Granitoid Complex: a shift from C-type to A-type magmatism during lithospheric convergence // Lithos. 2000. Vol. 53. P. 37–58. doi: 10.1016/S0024-4937(00)00007-4

O'Reilly S. Y., Zhang M., Griffin W. L., Begg G., Hronsky J. Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? // Lithos. 2009. Vol. 211. P. 1043–1054. doi: 10.1016/j.lithos.2009.04.028

Peltonen P., Kontinen A., Huhma H. Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua Ophiolite, Northeastern Finland // J. of Petrology. 1996. Vol. 37. P. 1359–1383. doi: 10.1093/petrology/37.6.1359

Peltonen P., Kontinen A., Huhma H. Petrogenesis of the mantle sequence of the Jormua Ophiolite (Finland): melt migration in the upper mantle during Palaeoproterozoic continental break-up // J. of Petrology. 1998. Vol. 39. P. 297–329. doi: 10.1093/petroj/39.2.297

Rämö O. T., Vaasjoki M., Mänttäri I., Elliott B. A., Nironen M. Petrogenesis of the post-kinematic magmatism of the Central Finland Granitoid Complex: I. Radiogenic isotope constraints and implications for crustal evolution // J. of Petrology. 2001. Vol. 42. P. 1971–1993. doi: 10.1093/petrology/42.11.1971

Rayner N. M., Stern R. A., Bickford M. E. Tectonic implications of new SHRIMP and TIMS U-Pb geochronology of rocks from the Sask Craton, Peter Lake Domain, and Hearne margin, Trans-Hudson Orogen, Saskatchewan // Can. J. Earth Sci. 2005. Vol. 42 (4). P. 635–657. doi: 10.1139/e04-045

Schulz K. J., Cannon W. F. The Penokean orogeny in the Lake Superior region // Precambrian Research. 2007. Vol. 157. P. 4–25. doi: 10.1016/j.precamres.2007.02.022

Symons D. T. A., Harris M. J. The 1830 Ma Trans-Hudson hairpin from paleomagnetism of the Wapisu gneiss dome, Kisseynew Domain, Manitoba // Can. J. Earth Sci. 2000. Vol. 37. P. 913–922. doi: 10.1139/e99-043

Väisänen M., Mänttäri I., Kriegsman L. M., Hölttä P. Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland // Lithos. 2000. Vol. 54. P. 63–81. doi: 10.1016/ S0024-4937(00)00018-9

Vaittinen K., Korja T., Kaikkonen P., Lah ti I., Smirnov M. Yu. High-resolution magnetotelluric studies of the Archaean – Proterozoic border zone in the Fennoscandian Shield, Finland // Geophys. J. Int. 2012. Vol. 188. P. 908–924. doi: 10.1111/j.1365-246X.2011.05300.x

Van der Velden A. J., Cook F. A. Proterozoic and Cenozoic subduction complexes: A comparison of geometric features // Tectonics. 1999. Vol. 18, no. 4. P. 575– 581. doi: 10.1029/1999TC900011

Williams H., Hoffman P. E., Lewry J. F., Mon ger J. W. H., Rivers T. Anatomy of North America: thematic portrayals of the continent // Tectonophysics. 1991. Vol. 187. P. 117–134.

References

Mints M. V. Paleoproterozoiskii superkontinent: vozniknovenie i evolyutsiya akkretsionnykh i kollizionnykh orogenov (na primere severnykh kratonov) [Paleoproterozoic supercontinent: origin and evolution of accretionary and collisional orogens exemplified in Northern cratons]. Geotektonika [Geotectonics]. 2007. No. 4. P. 3–29.

Mints M. V. Ob’emnaya model’ glubinnogo stroeniya rannedokembriiskoi kory Vostochno-Evropeiskogo kratona, paleogeodinamicheskie sledstviya [A 3D model of the deep structure of the Early Precambrian crust in the East European Craton and Paleogeodynamic implications]. Geotektonika [Geotectonics]. 2011. No. 4. P. 3–29. doi: 10.1134/S0016852111040054

Mints M. V. Seismicheskie obrazy koro-mantiinoi granitsy kak otrazhenie geodinamiki dokembriiskogo koroobrazovaniya [Seismic images of the crust-mantle boundary as an expression of geodynamics of the Precambrian crust formation]. Geofizicheskie issledovaniya [Geophysical Research]. 2016. Vol. 17, no. 1. P. 65–82.

Mints M. V. Paleoproterozoi-fanerozoiskaya istoriya Atlanticheskoi zony: unikal’nyi primer vzaimodeistviya plyum-tektoniki i pleit-tektoniki [The Palaeoproterozoic-Phanerozoic history of the Atlantic zone: a unique example of plume and plate tectonics relationship]. Tektonika sovre mennykh i drevnikh okeanov i ikh okrain: Materialy XLIX Tektonicheskogo soveshchaniya, posvyashchennogo 100 letiyu akademika Yu. M. Pushcharovskogo [Tectonics of Modern and Ancient Oceans and their Vicinity: Proceed. of XLIX Tectonic Meeting Dedicated to the 100th Anniv. of Acad. Yu. M. Pushcharovsky]. Ed. K. E. Degtyarev. Moscow: GEOS, 2017. Vol. 2. P. 19–23.

Mints M. V., Suleimanov A. K., Babayants P. S., Belousova E. A., Blokh Yu. I., Bogina M. M., Bush V. A., Dokukina K. A., Zamozhnyaya N. G., Zlobin V. L., Kaulina T. V., Konilov A. N., Mikhailov V. O., Natapov L. M., Piip V. B., Stupak V. M., Tikhotskii S. A., Trusov A. A., Filippova I. B., Shur D. Yu. Glubinnoe stroenie, evolyutsiya i poleznye iskopaemye rannedokembriiskogo fundamenta Vostochno-Evropeiskoi platformy: Interpretatsiya materialov po opornomu profilyu 1-EV, profilyam 4V i Tatseis [The deep crustal structure, evolution, and mineral deposits of the Early Precambrian basement of the East European Craton: interpretation of the data from the 1-EU Geotraverse, the 4B and TATSEIS profiles]. Moscow: GEOKART; GEOS, 2010. Vol. 1. 408 p.; vol. 2. 400 p.

Mints M. V., Sokolova E. Yu., rabochaya gruppa LADOGA (LADOGA working group). Ob’emnaya model’ glubinnogo stroeniya Svekofennskogo akkretsionnogo orogena po dannym MOV-OGT, MTZ i plotnostnogo modelirovaniya [A 3D model of the deep structure of the Svecofennian accretionary orogen according to CDP seismics, MTS and density modeling]. Trudy KarNTs RAN [Trans. of KarRC of RAS]. 2017. URL: journals.krc. karelia.ru/ doi: 10.17076/geo656

Sokolova E. Yu., Golubtsova N. S., Kovtun A. A., Kulikov V. A, Lozovskii I. N., Pushkarev P. Yu., Rokityanskii I. I., Taran Ya. V., Yakovlev A. G. Rezul’taty sinkhronnykh magnitotelluricheskikh i magnitovariatsionnykh zondirovanii v raione Ladozhskoi anomalii elektroprovodnosti [The results of synchronous magnetotelluric and magnetic-variation surveys within the Ladoga eclectroconductivity anomaly]. Geofizika [Geophysics]. 2016. No. 1. P. 48–64.

Sokolova E. Yu. i rabochaya gruppa LADOGA (LADOGA working group). Eksperiment sinkhronnogo profil’nogo MT/MV zondirovaniya Ladozhskoi anomalii elektroprovodnosti: novye svidetel’stva o strukture yugo-vostoka Baltiiskogo shchita [An experiment of synchronous MT/MV surveys of the Ladoga eclectroconductivity anomaly: new data on the structure of the south-eastern Baltic Shield]. Glubinnoe stroenie i geodinamika Priladozh’ya: Mater. Vseros. nauch. konf. s mezhdunar. uchastiem. IG KarNTs RAN [Deep structure and geodynamics of Lake Ladoga region. Proceed. of the All-Russ. Scientific Conf. with Int. Part. IG KarRC RAS]. Petrozavodsk: KarRC of RAS, 2017. P. 204–214.

Andersson U. B., Högdahl K., Sjöström and Bergman S. Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U – Pb geochronology. Geol. Mag. 2006. Vol. 143, no. 5. P. 679–697. doi: 0.1017/ S0016756806002494

Andersson U. B., Begg G. C., Griffin W. L., Hög dahl K. Ancient and juvenile components in the continental crust and mantle: Hf isotopes in zircon from Svecofennian magmatic rocks and rapakivi granites in Sweden. Lithosphere. 2011. Vol. 3, no. 6. P. 409–419. doi: 10.1130/L162.1

Aspler L. B., Chiarenzelli J. R. Two Neoarchean supercontinents? Evidence from the Paleoproterozoic. Sedimentary Geol. 1998. Vol. 120. P. 75–104. Aspler L. B., Chiarenzelli J. R., Cousens B. L., McNicoll V. J., Davis W. J. Paleoproterozoic intracratonic basin processes, from breakup of Kenorland to assembly of Laurentia: Hurwitz Basin, Nunavut, Canada. Sediment. Geol. 2001. Vol. 141/142. P. 287–318.

Bickford M. E., Mock T. D., Steinhart III W. E., Col lerson K. D., Lewry J. F. Origin of the Archean Sask craton and its extent within the Trans-Hudson orogen: evidence from Pb and Nd isotopic compositions of basement rocks and post-orogenic intrusions. Can. J. Earth Sci. 2005. Vol. 42 (4). P. 659–684. doi: 10.1139/e04-064

Buchan K. L., Mortensen J. K., Card K. D., Percival J. A. Paleomagnetism and U – Pb geochronology of diabase dyke swarms of Minto block, Superior Province, Quebec, Canada. Can. J. Earth Sci. 1998. Vol. 35. P. 1054–1069. doi: 10.1139/e98-054

Chiarenzelli J. R., Aspler L. B., Villeneuve M., Lewry J. F. Early Proterozoic evolution of the Saskatchewan Craton and its allochthonous cover, Trans-Hudson Orogen. J. Geol. 1998. Vol. 106. P. 247–267.

Collier J. S., Buhl P., Tome M., Watts A. B. Moho and lower crustal reflectivity beneath a young rift basin: results from a two-ship, wide-aperture seismic-reflection experiment in the Valencia Trough (western Mediterranean). Geophys. J. Inter. 1994. Vol. 118. P. 159–180.

Dahl P. S., Hamilton M. A., Wooden J. L., Fo land K. A., Frei R., McCombs J. A., Holm D. K. 2480 Ma mafic magmatism in the northern Black Hills, South Dakota: a new link connecting the Wyoming and Superior cratons. Can. J. Earth Sci. 2006. Vol. 43 (10). P. 1579– 1600. doi: 10.1139/e06-066

De Wit M., Tinker J. Crustal structures across the central Kaapvaal craton from deep-seismic reflection data. South African J. of Geology. 2004. Vol. 107. P. 185–206. doi: 10.2113/107.1-2.185

Gala M. G., Symons D. T. A., Palmer H. C. Geotectonics of the Hanson Lake Block, Trans-Hudson Orogen, Central Canada: A preliminary paleomagnetic report. Precambrian Research. 1998. Vol. 90. P. 85–101. doi: 10.1016/S0301-9268(98)00034-5

Glaznev V. N., Mints M. V., Muravina O. M., Raev sky A. B., Osipenko L. G. Complex geological – geophysical 3D model of the crust in the southeastern Fennoscandian Shield: nature of density layering of the crust and the crust – mantle boundary. Geodynamics and Tectonophysics. 2015. Vol. 6, no. 2. P. 133–170. doi: 10.5800/GT-2015-6-2-0176

Goodwin A. M. Rooted Precambrian ring-shields: growth, alignment, and oscillation. Amer. J. Sci. 1985. Vol. 285. P. 481–531. doi: 10.2475/ajs. 285.6.481

Gower C. F., Krogh T. A. U-Pb geochronological review of the Proterozoic history of the eastern Grenville Province. Can. J. Earth Sci. 2002. Vol. 39. P. 795–829. doi: 10.1139/e01–090

Gower C. F., Ryan A. B., Rivers T. Mid-Proterozoic Laurentia-Baltica: an overview of its geological evolution and a summary of the contributions made by this volume. Mid-Proterozoic Laurentia-Baltica. Geol. Assoc. 1990. Canada Sp. Paper 38. P. 1–20.

Halls H. C., Heaman L. M. The paleomagnetic significance of new U-Pb age data from the Molson Dyke Swarm, Cauchon Lake Area, Manitoba. Can. J. Earth Sci. 2000. Vol. 37. P. 957–966. doi: 10.1139/ e00-010

Hanski E. J., Huhma H., Lehtonen M. I., Rastas P. 2.0 Ga old oceanic crust in northern Finland. In: Hanski E. and Vuollo J. International Ophiolite Symposium and Field Excursion, Abstracts: Geological Survey of Finland Special Paper 26, 1998. 24 p.

Hoffman P. United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Ann. Rev. Earth Planet. Sci. 1988. Vol. 16. P. 543–604.

Hoffman P. F. Precambrian Geology and Tectonic History of North America: An Overview. The Geology of North America. Geol. Soc. Amer. 1989. Vol. A. P. 447–512.

Janik T., Kozlovskaya E., Heikkinen P., Yliniemi J., Silvennoinen H. Evidence for preservation of crustal root beneath the Proterozoic Lapland-Kola orogen (northern Fennoscandian shield) derived from P and S wave velocity models of POLAR and HUKKA wide-angle reflection and refraction profiles and FIRE4 reflection transect. J. of Geophysical Research. 2009. Vol. 114. Р. B06308. doi: 10.1029/2008JB005689

Kähkönen Y., Lahtinen R., Nironen M. Palaeoproterozoic supracrustal belts in southwestern Finland. High Temperature – Low Pressure Metamorphism and Deep Crustal Structures. Meeting of International Geoscience Programme (IGCP) Project 304 “Deep Crustal Processes” in Finland. Geological Survey of Finland Guide 37. 1994. P. 43–47.

Kontinen A. An early Proterozoic ophiolite – the Jormua mafic-ultramafic complex, northeastern Finland. Precambrian Research. 1987. Vol. 35. P. 313–341.

Kontinen A., Paavola J. A preliminary model of the crustal structure of the eastern Finland Archaean complex between Vartius and Vieremä, based on constraints from surface geology and Fire 1 seismic survey. Finnish Reflection Experiment FIRE 2001–2005: Geological Survey of Finland, Special Paper 43. 2006. P. 223–240.

Korja A., Lahtinen R., Heikkinen P., Kukkonen I. N. and FIRE Working Group. A geological interpretation of the upper crust along FIRE 1. In: Finnish Reflection Experiment FIRE 2001–2005. Geological Survey of Finland, Special paper 43. 2006a. P. 45–76.

Korja A., Lahtinen R., Nironen M. The Svecofennian orogen: a collage of microcontinents and island arcs. In: European Lithosphere Dynamics. Geological Society, London, Memoirs. 2006b. Vol. 32. P. 561–578.

Korja T., Engels M., Zhamaletdinov A. A., Kovtun A. A., Palshin N. A., Smirnov M. Yu., Tokarev A. D., Asming V. E., Vanyan L. L., Vardaniants I. L. and the BEAR Working Group. Crustal conductivity in Fennoscandia – a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space. 2002. Vol. 54. P. 535–558.

Krawczyk C. M., Stiller M., DEKORP – BASIN Re search Group. Reflection seismic constraints on Paleozoic crustal structure and Moho beneath the NE German Basin. Tectonophysics. 1999. Vol. 314. P. 241–253. doi: 10.1016/S0040-1951(99)00246-2

Kukkonen I. T., Kuusisto M., Lehtonen M., Pel tonen P. Delamination of eclogitized lower crust: Control on the crust – mantle boundary in the central Fennoscandian shield. Tectonophysics. 2008. Vol. 457. P. 111–127. doi: 10.1016/j.tecto.2008.04.029

Kukkonen I. T., Lahtinen R. Finnish reflection experiment FIRE 2001–2005. Geological Survey of Finland, Specal Paper. 2006. Vol. 43. 247 p.

Lahtinen R., Korja A., Nironen M. Paleoproterozoic tectonic evolution. In: Lehtinen, M., Nurmi, P. A., Rämö, O. T. (Eds.), Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian Shield. Elsevier B. V., Amsterdam. 2005. P. 481–532.

Lahtinen R., Korja A., Nironen M., Heikkinen P. Palaeoproterozoic accretionary processes in Fennoscandia. Eds. P. A. Cawood, A. Kröner. Earth Accretionary Systems in Space and Time. The Geological Society, London, Special Publications. 2009. Vol. 318. P. 237– 256. doi: 10.1144/SP318.8

Mints M. V. Granulite-gneiss belts and areals of the East European craton (regional and global patterns of tectonic and geodynamic evolution of the granulite-gneiss complexes). Geotectonics. 2014. Vol. 48. P. 496–522.

Mints M. V., Eriksson P. G. Secular changes in relationships between plate-tectonic and mantle-plume engendered processes during Precambrian time. Geodynamics & Tectonophysics. 2016. Vol. 7 (2). P. 173–232. doi: 10.5800/GT-2016-7-2-0203

Mints M. V., Suleimanov A. K., Zamozhniaya N. G., Stupak V. M. Chapter 12. Study of the basement of the Russian European Platform based on a system of geotraverses and CMP profiles: 3D models of the Early Precambrian crust in key regions. In: Mints M. V., Dokukina K. A., Konilov A. N., Philippova I. B., Zlobin V. L., Babayants P. S., Belousova E. A., Blokh Yu. I., Bogina M. M., Bush W. A., Dokukin P. A., Kaulina T. V., Natapov L. M., Piip V. B., Stupak V. M., Suleimanov A. K., Trusov A. A., Van K. V., Zamozhniaya N. G. East European Craton: Early Precambrian history and 3D models of deep crustal structure. The Geological Society of America Special Paper 510. 2015. P. 265–300. doi: 10.1130/2015.2510(12)

Nironen M., Elliott B. A., Rämö O. T. 1.88–1.87 Ga post-kinematic intrusions of the Central Finland Granitoid Complex: a shift from C-type to A-type magmatism during lithospheric convergence. Lithos. 2000. Vol. 53. P. 37–58. doi: 10.1016/S0024-4937(00)00007-4

O'Reilly S. Y., Zhang M., Griffin W. L., Begg G., Hronsky J. Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? Lithos. 2009. Vol. 211. P. 1043–1054. doi: 10.1016/j.lithos.2009.04.028

Peltonen P., Kontinen A., Huhma H. Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua Ophiolite, Northeastern Finland. J. of Petrology. 1996. Vol. 37. P. 1359–1383. doi: 10.1093/petrology/37.6.1359

Peltonen P., Kontinen A., Huhma H. Petrogenesis of the mantle sequence of the Jormua Ophiolite (Finland): melt migration in the upper mantle during Palaeoproterozoic continental break-up. J. of Petrology. 1998. Vol. 39. P. 297–329. doi: 10.1093/petroj/ 39.2.297

Rämö O. T., Vaasjoki M., Mänttäri I., Elliott B. A., Nironen M. Petrogenesis of the post-kinematic magmatism of the Central Finland Granitoid Complex: I. Radiogenic isotope constraints and implications for crustal evolution. J. of Petrology. 2001. Vol. 42. P. 1971–1993. doi: 10.1093/petrology/42.11.1971

Rayner N. M., Stern R. A., Bickford M. E. Tectonic implications of new SHRIMP and TIMS U-Pb geochronology of rocks from the Sask Craton, Peter Lake Domain, and Hearne margin, Trans-Hudson Orogen, Saskatchewan. Can. J. Earth Sci. 2005. Vol. 42 (4). P. 635–657. doi: 10.1139/e04-045

Schulz K. J., Cannon W. F. The Penokean orogeny in the Lake Superior region. Precambrian Research. 2007. Vol. 157. P. 4–25. doi: 10.1016/j.precamres.2007.02.022

Symons D. T. A., Harris M. J. The 1830 Ma TransHudson hairpin from paleomagnetism of the Wapisu gneiss dome, Kisseynew Domain, Manitoba. Can. J. Earth Sci. 2000. Vol. 37. P. 913–922. doi: 10.1139/ e99-043

Väisänen M., Mänttäri I., Kriegsman L. M., Hölt tä P. Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos. 2000. Vol. 54. P. 63–81. doi: 10.1016/ S0024-4937(00)00018-9

Vaittinen K., Korja T., Kaikkonen P., Lahti I., Smirnov M. Yu. High-resolution magnetotelluric studies of the Archaean – Proterozoic border zone in the Fennoscandian Shield, Finland. Geophys. J. Inter. 2012. Vol.188. P.908–924. doi: 10.1111/ j.1365-246X.2011.05300.x

Van der Velden A. J., Cook F. A. Proterozoic and Cenozoic subduction complexes: A comparison of geometric features. Tectonics. 1999. Vol. 18, no. 4. P. 575–581. doi: 10.1029/1999TC900011

Williams H., Hoffman P. E, Lewry J. F., Monger J. W. H., Rivers T. Anatomy of North America: thematic portrayals of the continent. Tectonophysics. 1991. Vol. 187. P. 117–134.




DOI: http://dx.doi.org/10.17076/geo698

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019