ОРИГИНАЛЬНЫЕ СТАТЬИ Original articles

УДК 550.93:551.71 (470.22)

ГЛАВНЫЕ ЭПИЗОДЫ ФОРМИРОВАНИЯ ПОЛОСЧАТЫХ ЖЕЛЕЗИСТЫХ КВАРЦИТОВ КОСТОМУКШСКОГО ЗЕЛЕНОКАМЕННОГО ПОЯСА (КАРЕЛЬСКИЙ КРАТОН): ДАННЫЕ U-Th-Pb ДАТИРОВАНИЯ ЦИРКОНА

А. И. Слабунов^{1,2*}, А. В. Кервинен¹, Н. С. Нестерова¹, А. В. Егоров¹, О. А. Максимов¹, П. В. Медведев^{1,2}

¹ Институт геологии КарНЦ РАН, ФИЦ «Карельский научный центр РАН» (ул. Пушкинская, 11, Петрозаводск, Республика Карелия, Россия, 185910), *slabunov@krc.karelia.ru

² Петрозаводский государственный университет (пр. Ленина, 33, Петрозаводск, Республика Карелия, Россия, 185910)

Проведено исследование циркона из полосчатых железистых кварцитов (BIF) Костомукшского зеленокаменного пояса (КЗП) Карельского кратона. Здесь известны три породные ассоциации, в которые входят BIF: с мезоархейскими базальт-коматиитами – BIF-1; с мезо-неоархейскими кислыми вулканитами – BIF-2; с неоархейскими граувакками и кислыми вулканитами – BIF-3. Все BIF содержат акцессорный циркон. Анализ их изотопного возраста показывает существование в каждой пробе 1-4 возрастных кластеров. В большинстве пробустановлены единичные зерна детритового циркона, который имеет соизмеримый или более древний, чем вмещающие BIF породы, возраст. Возраст детритового циркона в каждой ассоциации BIF отличается: в BIF-1 – 2,84 млрд лет, в BIF-2 детритовый циркон отсутствует и в BIF-3 – 2,98–2,75 млрд лет. Большая часть циркона в BIF имеет метаморфогенную природу. При этом во всех группах BIF установлен циркон с возрастом 2,75-2,72 млрд лет, а в BIF-3 также с возрастом 2,65-2,64 млрд лет, связанный, по-видимому, с проявлениями кислого магматизма. В BIF-1 и -3 впервые описан палеопротерозойский (1,89–1,85 млрд лет) циркон в виде каймы и отдельных зерен, свидетельствующий о локальном проявлении здесь тектонотермальных процессов, синхронных со становлением Свекофеннского орогена.

Ключевые слова: полосчатые железистые кварциты; циркон; изотопный возраст; архей; палеопротерозой; Костомукшский зеленокаменный пояс; Карельский кратон

Для цитирования: Слабунов А. И., Кервинен А. В., Нестерова Н. С., Егоров А. В., Максимов О. А., Медведев П. В. Главные эпизоды формирования полосчатых железистых кварцитов Костомукшского зеленокаменного пояса (Карельский кратон): данные U-Th-Pb датирования циркона // Труды Карельского научного центра РАН. 2023. № 2. С. 5–22. doi: 10.17076/geo1749

Финансирование. Работа выполнена при финансовой поддержке РНФ (грант № 22-17-00026).

A. I. Slabunov^{1,2*}, A. V. Kervinen¹, N. S. Nesterova¹, A. V. Egorov¹, O. A. Maksimov¹, P. V. Medvedev^{1,2}. MAIN STAGES OF THE KOSTOMUKSHA GREENSTONE BELT BANDED IRON FORMATION GENESIS, KARELIAN CRATON: BASED ON U-Th-Pb DATING OF ZIRCON

¹ Institute of Geology, Karelian Research Centre, Russian Academy of Sciences (11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia), *slabunov@krc.karelia.ru

² Petrozavodsk State University (33 Lenin Ave., 185910 Petrozavodsk, Karelia, Russia)

We studied zircon from banded iron formations (BIFs) in the Kostomuksha greenstone belt (KGSB), Karelian Craton, for the first time. Here, BIFs are associated with Mesoarchean basalt-komatiites – BIF-1 and felsic volcanics – BIF-2, as well as with Neoarchean graywackes and felsic volcanics – BIF-3. All the BIFs contain accessory zircon. Analysis of its isotopic age shows the presence of 1-4 age clusters in each sample. There are single grains of detrital zircon in most of the studied BIFs. The grains are of commensurable or older age than the BIF enclosing rocks. The ages of detrital zircons differ among BIF association: 2.84 Ga in BIF-1, no detrital zincon in BIF-2, and 2.98–2.75 Ga in BIF-3. Most of the zircon in the BIFs is of metamorphic origin. All BIF groups contain 2.75–2.72 Ga zircon, while BIF-3 also has 2.65–2.64 Ga zircon associated with felsic magmatism. Rims and grains of 1.89–1.85 Ga zircon from BIF-1 and BIF-3, indicative of local tectono-thermal processes simultaneous with the formation of the Svecofennian Orogen, are reported here for the first time.

Keywords: Banded Iron Formation; zircons; isotopic age; Archean; Paleoproterozoic; Kostomuksha greenstone belt; Karelian Craton

For citation: Slabunov A. I., Kervinen A. V., Nesterova N. S., Egorov A. V., Maksimov O. A., Medvedev P. V. Main stages of the Kostomuksha greenstone belt Banded Iron Formation genesis, Karelian Craton: based on U-Th-Pb dating of zircon. *Trudy Karel'skogo nauchnogo tsentra RAN = Transactions of the Karelian Research Centre RAS*. 2023. No. 2. P. 5–22. doi: 10.17076/geo1749

Funding. The study was funded by the Russian Science Foundation (grant #22-17-00026).

Введение

Полосчатые железистые кварциты (banded iron formation, BIF) - это в различной степени метаморфизованные хемогенно-осадочные, часто с терригенной примесью, богатые железом (15-40 мас. % Fe) и кремнеземом (40-60 мас. % SiO₂) горные породы, представляющие собой чередование слоев, обогащенных соответственно железосодержащими минералами (гематит, магнетит, сидерит) и кремнеземом (кварц, яшма, халцедон) и формировавшихся исключительно в раннем докембрии [Bekker et al., 2010; Konhauser et al., 2017; Bekker, Kovalick, 2021; Медведев, 2022]. По поводу происхождения BIF существуют значительные разногласия, но большинство исследователей связывает их образование с окислением растворенного в морской воде двухвалентного железа за счет кислорода, вероятно, продуцированного цианобактериями в условиях бескислородной атмосферы. При этом предполагается, что источником железа и кремния могли служить подводные гидротермы (аналоги современных черных курильщиков) [Bekker, Kovalick, 2021].

ВІГ являются важной составляющей зеленокаменных комплексов и могут формировать месторождения железа [Bekker et al., 2010]. Такие месторождения известны в архейских комплексах Карельской и Кольской провинций Фенноскандинавского щита (рис. 1, а), и крупнейшее среди них в регионе - Костомукшское месторождение [Железисто-кремнистые..., 1988; Костомукшский..., 2015]. Оценка условий формирования BIF и последующих их метаморфических преобразований важны как для интерпретации геодинамических процессов, обеспечивающих их становление, так и для прогноза качества руды. Данная статья посвящена рассмотрению возраста цирконов, впервые выделенных из BIF Костомукшского зеленокаменного пояса (КЗП) Карельского кратона, и направлена на понимание истории формирования этих пород.

КЗП (рис. 1, б) представляет собой относительно небольшую (25 км по простиранию)

(a) КЗП в структуре Фенноскандинавского щита [Слабунов и др., 2006, 2021; Höltta et al., 2014; Куликов и др., 2017]: 1 – каледониды, байкалиды и неопротерозойские образования; 2, 3 – палеопротерозойская кора: 2 – ювенильная, 3 – с фрагментами архейской; 4 – архейская кора (НК – кратон Норрботтен; БП – Беломорская провинция, КП – Кольская провинция, МК – Мурманский кратон); 5 – архейские (а) зеленокаменные и (b) парагнейсовые пояса; 6 – границы провинций.

(б) Схема геологического строения Костомукшского пояса [Горьковец и др., 1981; Кожевников и др., 2006; Кулешевич, Фурман, 2009; Слабунов и др., 2021; Slabunov et al., 2020 с авторскими дополнениями]:

1 – неопротерозойские (рифейские) лампроиты и кимберлиты; 2 – палеопротерозойские (2,4 и 2,1 млрд лет) долериты; 3–8 – неоархейские: 3 – санукитоиды (2,71 млрд лет), 4 – граниты (2,72–2,68 млрд лет), 5 – гранитоиды ТТГ ассоциации (2,78 млрд лет), 6–8 – породы гимольской серии: 6 – метаграувакки (2,76–2,74 млрд лет), 7 – силлы и дайки метариолитов (геллефлинты) (2,76–2,74 млрд лет), 8 – BIF-3, круги – места отбора из них геохронологических проб; 9–12 – мезоархейские (2,84–2,78 млрд лет): 9 – туфы, туффиты риолит-риодациты (шурловаарская свита), 10 – прослои BIF-2, квадраты – места отбора из них геохронологических проб, 11 – базальт-коматиитовый комплекс (рувинваарская свита), 12 – прослои BIF-1, треугольник – место отбора из них геохронологической пробы; 13 – базальты и коматииты (ниемиярвинская свита); 14 – разломы; 15 – надвиг

Fig. 1. Location and structure of the Kostomuksha Greenstone Belt.

(a) Location of the Kostomuksha Greenstone Belt in the Fennoscandian Shield [Slabunov et al., 2006, 2021; Höltta et al., 2014; Kulikov et al., 2017]:

1 – Caledonides, Baikalides and Neoproterozoic rocks; 2, 3 – Paleoproterozoic Earth crust: 2 – juvenile, 3 – with fragments of Archean crust; 4 – Archean Earth crust (NC – Norrbotten Craton, BP – Belomorian Province, KP – Kola Province, MC – Murmansk Craton); 5 – Archean greenstone (a) and paragneiss (b) belts; 6 – boundaries of provinces.

(b) A geological scheme of the Kostomuksha Greenstone Belt compiled by the authors using own observations and after [Gor'kovets et al., 1981; Kozhevnikov et al., 2006; Kuleshevich, Furman, 2009; Slabunov et al., 2020, 2021]:

1 – Neoproterozoic (Riphean) lamproites and kimberlites; 2 – Paleoproterozoic (2.4 and 2.1 Ga) dolerites; 3–8 Neoarchean: 3 – 2.71 Ga sanukitoids, 4 – 2.72–2.68 Ga granites, 5 – 2.78 Ga TTG granitoids, 6–8 – Gimoly Group rocks: 6 – 2.76–2.74 Ga metagraywackes, 7 – 2.76–2.74 Ga rhyolite (halleflinta) sills and dikes, 8 – BIF-3, circles – location of geochronological sample, 9–12 – Mesoarchean (2.84–2.78 Ga) Kontokki Group: 9 – tuffs, tuffites, rhyolite-rhyodacites (Shurlovaara Formation), 10 – BIF-2 layers, squares – location of geochronological sample, 11 – basalts and basalt-komatiites (Ruvinvaara Formation), 12 – BIF-1 layers, triangle – location of geochronological sample; 13 – basalts and komatiites (Niemijarvi Formation); 14 – faults; 15 – overthrust

субмеридиональную структуру [Чернов, 1964; Кожевников, 2000; Кожевников и др., 2006; Костомукшский..., 2015]. Зеленокаменный комплекс, слагающий КЗП, состоит из двух стратотектонических ассоциаций (серий): контокской и гимольской [Горьковец и др., 1981]. В их составе установлены три разновозрастные ассоциации BIF [Горьковец и др., 1981]:

1) с мезоархейскими (2,87–2,81 млрд лет) [Puchtel et al., 1998; Лобач-Жученко и др., 2000; Вревский, 2022] базальт-коматиитами рувинваарской свиты в составе быстро выклинивающихся прослоев осадочных пород мощностью 1–10, редко до 120 м – BIF-1;

2) с мезоархейскими (2,8–2,79 млрд лет) [Puchtel et al., 1998; Лобач-Жученко и др., 2000; Бибикова и др., 2005] риолитами – риодацитами шурловаарской свиты в составе горизонта осадков мощностью до 70 м, прослеживающегося на расстояние до 20 км – BIF-2;

3) с неоархейской (2,76–2,74 млрд лет) [Слабунов и др., 2021] толщей (мощностью до 700 м) метаморфизованных граувакк флишевого типа с телами кислых вулканитов – BIF-3. В нижней части разреза этой толщи (костомукшская свита гимольской серии) находятся самые богатые руды с мощностью отдельных прослоев до 80 м.

ВІГ каждого из трех типов имеют характерные геохимические особенности [Горьковец и др., 1981, 1991; Slabunov et al., 2020], указывающие на меняющиеся условия их формирования: BIF-1 в среднем обогащены MgO, Al₂O₃, TiO₂, MnO, Cr, Ni, отражая участие в их формировании наряду с гидротермами детритового вещества из базальт-коматиитов, а при формировании BIF-2 и -3 – кислых вулканитов.

Гранитоиды тоналит-трондьемит-гранодиоритовой (TTГ) ассоциации из обрамления пояса имеют неоархейский возраст (2779 ± 11 млн лет) [Бибикова и др., 2005]. Зеленокаменный комплекс сечется неоархейскими (2720 ± 20 млн лет) гранитами Ниемиярвинского массива, санукитоидными массивами (например, Таловейс – 2718–2707 млн лет), гранит-порфирами (2707 ± 31 млн лет) и гранитами шурловаарского массива (2675 ± 9 млн лет) [Лобач-Жученко и др., 2000; Бибикова и др., 2005]. Кроме того, гранит-зеленокаменный комплекс рассекается палеопротерозойскими (2,4 и 2,1 млрд лет) дайками долеритов [Stepanova, 2014; Степанова и др., 2017] и телами неопротерозойских (около 1,2 млрд лет) лампроитов и кимберлитов (рис. 1, б) [Никитина и др., 1999; Костомукшский..., 2015].

В палеопротерозое (1,9–1,65 млрд лет) к западу от Карельского кратона развивался Свекофеннский аккреционный ороген [Балтыбаев, 2013, 2022]. Его влияние на прилегающие архейские провинции Карельского кратона известно, но в районе КЗП не установлено.

ВІҒ КЗП состоят главным образом из кварца и магнетита, но в них также отмечаются амфиболы (в том числе рибекит, грюнерит), биотит, гранат [Горьковец и др., 1981]. Кроме того, в них описаны карбонаты, калиевый полевой шпат, сульфиды (пирротин, пирит, галенит, сфалерит), апатит, титанит, турмалин, барит, монацит, ксенотим и несколько генераций циркона [Горьковец и др., 1981; Слабунов и др., 2022].

Породы КЗП неоднократно и неравномерно метаморфизованы в условиях зеленосланцевой, эпидот-амфиболитовой и амфиболитовой фаций, в ВІГ при этом установлено до четырех генераций магнетита [Горьковец и др., 1991]. Возраст проявления амфиболитовой фации метаморфизма в породах контокской серии оценивается в 2674 ± 13 млн лет (по циркону [Levskii et al., 2009]) и в 2757±113 млн лет (Sm-Nd по метаморфогенным минералам [Puchtel et al., 1998]).

Методы исследований

Выделение цирконов проводилось в ИГ КарНЦ РАН (г. Петрозаводск) из проб Э-КОРП1-3/2, Э-КОС2-2/1 и Э-КОС1-1/3 по стандартной методике с использованием магнитной сепарации и тяжелых жидкостей [Кевлич, 2022], а из пробы Э-КС20-10/1 – с применением водной методики [Soderlund, Johansso, 2002].

U-Th-Pb изотопно-геохронологические исследования циркона проводились в ЦИИ ВСЕГЕИ (г. Санкт-Петербург) на ионном микрозонде SHRIMP-II по стандартной методике [Williams, 1998; Larionov et al., 2004]. Цирконы, помещенные совместно со стандартными цирконами 91500 [Wiedenbeck et al., 1995] и Теmora [Black et al., 2003] в эпоксидную матрицу, шлифовались примерно до половины толщины и покрывались ~100 А слоем 99,999% золота. Внутренняя структура цирконов изучалась средствами оптической микроскопии и катодолюминесценции. Для анализа выбирались области без видимых трещин и включений в идиоморфных индивидах. Полученные результаты обрабатывались с помощью программ SQUID v1.12 и ISOPLOT/Ex 4.12 [Ludwig, 2008] с использованием констант распада [Steiger, Jager, 1977]. Поправка на нерадиогенный свинец по модели [Stacey, Kramers, 1975] введена с использованием измеренного отношения ²⁰⁴Pb/²⁰⁶Pb.

U-Th-Pb изотопное датирование циркона методом LA-ICP-MS выполнено в лаборатории химико-аналитических исследований Геологического института РАН (г. Москва). Для лазерного отбора пробы использовалась система лазерной абляции NWR-213 (Electro Scientific Ind.), совмещенная с магнитным секторным ICP масс-спектрометром высокого разрешения Element2 (Thermo Scientific Inc.) [Sheshukov et al., 2018].

Калибровка проводилась по внешнему стандарту с использованием циркона GJ-1 [Jackson et al., 2004; Elhlou et al., 2006] c aκцептированным методом CA-ID-TIMS ²⁰⁶Pb/²³⁸U возрастом 601,9 ± 0,4 Ma [Horstwood et al., 2016]. Для контроля качества анализа использованы стандарты циркона 91500 [Wiedenbeck et al., 1995] и Plesovice [Sláma et al., 2008] с акцептированными по методу CA-ID-TIMS возрастами 1062,4 ± 0,4 и 337,1 ± 0,4 млн лет соответственно [Horstwood et al., 2016]. В ходе исследования проб Э-КС20-10/1 для контрольных стандартов были получены средневзвешенные ²⁰⁶Pb/²³⁸U оценки возраста (2 σ) 1067,6 ± 6,1 (n = 12) и 336,7 ± 1,8 (n = 12) млн лет соответственно, что хорошо согласуется с данными метода CA-TIMS. Обработка данных U-Th-Pb изотопного анализа проводилась в программе Glitter 4.4 [Van Achterbergh et al., 2001]. Поправки на нерадиогенный свинец вводились на основе процедуры T. Andersen [2002] с применением программы ComPbCorr 3.18 [Andersen, 2008]. Для графической иллюстрации полученных результатов использовалась программа Isoplot 4.15 [Ludwig, 2008].

Результаты

Несмотря на относительно низкое (5–40 г/т) содержание Zr в рассматриваемых BIF (табл. 1), во всех пробах циркон был установлен как в шлифах, так и в монофракциях. При этом его количество в пробах варьирует от 14–60 зерен (в КОС2-2/1 и КОС1-1/3) до сотен (во всех остальных), что напрямую коррелируется с содержанием Zr в породе (табл. 1).

Из BIF-1 (проба Э-КС20-10/1; рис. 1, б), представленного (гранат)-амфибол-биотитовым магнетитовым кварцитом с относительно низким содержанием Fe и высоким – Zr (табл. 1), выделено более 200 зерен циркона и получено 116 датировок возраста методом LA-ICP-MS. Данные цирконы представлены прозрачными (полупрозрачными) бледноокрашенными коротко- (КУ 1–1,4) и длиннопризматическими (КУ 2,5–2,8) кристаллами, реже изометричными (рис. 2, а). Таблица 1. Химический состав (окислы – в вес. %, элементы – в г/т) полосчатых железистых кварцитов (Э-КС20-10/1, Э-КОС-1-1/3, Э-КОС2-2/1, Э-КОРП-1-3/2) трех ассоциаций (BIF-1, BIF-2, BIF-3) Костомукшского зеленокаменного пояса, из которых выделялся исследованный циркон

Table 1. Chemical composition (oxides in wt. %, elements in ppm) of banded iron formation of three associations (BIF-1, BIF-2 and BIF-3) of the Kostomuksha Greenstone Belt, from which the analysed zircon were separated

Accoциация Association	BIF-1	BIF-2	BI	F-3
Номер пробы Sample number	Э-КС20- 10/1	Э-КОС- 1-1/3	Э-КОС2- 2/1	Э-КОРП- 1-3/2
SiO	58,2	42,92	56,72	46,7
TiO	0,2	0,09	0,1	0,19
Al ₂ O ₂	5,1	0,47	3,08	0,53
Fe ₂ O ₂	11,48	34,69	17,12	30,95
FeO	15,8	17,78	16,95	15,25
MnO	0,166	0,117	0,035	0,034
MgO	1,36	1,1	2,05	1,74
CaO	4,96	0,72	1,29	1,2
Na ₂ O	0,23	0,12	0,78	0,45
K,O	1,69	0,06	0,35	1,58
P ₂ O ₅	0,17	0,13	0,2	0,28
H ₂ O	0,12	0,1	0,02	0,12
 	0,32	1,5	1,09	0,5
Sc	9,92	6,79	5,30	6,40
Ti	930,90	278,40	135,40	469,10
V	41,13	25.64	17,37	24,41
Cr	122,70	23,40	22,29	28,53
Со	9,61	2,39	1,06	2,79
Ni	26,99	20,45	18,67	20.08
Cu	22.88	11.74	8.26	6.50
Zn	59.77	24.38	6.80	14.75
Rb	107.80	0.64	8.57	104.70
Sr	12,96	9,33	25.02	11,34
Y	12.60	7.94	5.29	9.08
Zr	42,30	10,81	5,44	18,11
Nb	1,90	0,53	0,32	0.92
Ва	250,20	6,49	90,00	182,40
La	12,45	3,97	3,27	5,37
Ce	23,78	8,01	6,03	12,26
Pr	2,88	0,98	0,70	1,60
Nd	10,93	3,86	2,79	6,54
Sm	1,88	0,90	0,63	1,09
Eu	0,67	0,37	0,30	0,66
Gd	2,03	0,93	0,69	1,34
Tb	0,33	0,15	0,10	0,20
Dy	1,98	0,96	0,59	1,18
Ho	0,41	0,23	0,15	0,27
Er	1,23	0,71	0,45	0,81
Tm	0,18	0,11	0,06	0,12
Yb	1,23	0,76	0,47	0,85
Lu	0,18	0,12	0,09	0,14
Hf	1,16	0,29	0,13	0,48
Та	0,14	0,06	0,04	0,08
Pb	6,19	0,83	0,95	1,84
Th	2,55	0,73	0,32	1,08
U	0.68	0.22	0.06	0.24

9

Труды Карельского научного центра Российской академии наук. 2023. № 2

Выделяются зерна с ядрами и с хорошо выраженной осцилляторной зональностью, а также слабозональные без ядер. Признаков окатанности зерен нет. Th/U отношение в цирконах 0,13–1,08 (табл. 2), его корреляция с оценками возраста не отмечена.

По результатам оценки ²⁰⁷Pb-²⁰⁶Pb возраста циркона в данной пробе выделяется три возрастных кластера (рис. 2, 6; табл. 2). ²⁰⁷Pb-²⁰⁶Pb возраст (T_{p_b}) циркона первого кластера – 2,86–2,83 млрд лет ($T_c = 2837 \pm 4,6$ млн лет), второго (подавляющая часть, 92 % выборки) – 2,79–2,68 млрд лет, T_{p_b} третьего – 1,89–1,83 млрд лет (рис. 2, в). Аналитические точки первого кластера образуют компактную группу, конкордантный возраст (T_c) которой оценивается в 2837 ± 4,6 млн лет (рис. 2, в), а второго – дискордию (рис. 2, в), что позволяет оценить их U-Pb возраст по верхнему пересечению в 2748 ± 7 млн лет.

Из BIF-2 (шурловаарская свита, рис. 1, б) изучен циркон (рис. 3; табл. 3) в пробе Э-КОС1-1/3 (амфиболовый магнетитовый кварцит с высоким содержанием Fe, табл. 1). Из пробы выделено 60 зерен и получено (SHRIMP-II) 13 определений возраста. Циркон представлен прозрачными и полупрозрачными светло-коричневыми зернами призматического габитуса, удлиненными с КУ 2–2,5 или изометричными с КУ 1–1,3 (рис. 3, а). Кристаллы имеют тонкую осцилляторную зональность. Признаков окатанности нет. Th/U отношение в цирконе 0,17–0,90 (табл. 3). ²⁰⁷Pb-²⁰⁶Pb возраст циркона варьирует в узком диапазоне 2,75–2,70 млрд лет, а конкордантный U-Pb возраст оценивается в 2734 ± 3,5 млн лет (рис. 3, б, в).

В ВІF-3 (костомукшская серия) изучен циркон из двух проб (рис. 1, б). Из образца Э-КОРП1-3/2, представленного биотит-амфиболовым магнетитовым кварцитом с высоким содержанием Fe (табл. 1), выделено около 200 зерен, 16 из которых датированы (SHRIMP-II, 21 аналитическая точка). В пробе отмечается два морфологических типа циркона (рис. 4, а): 1) удлиненные зерна изометричной формы со сглаженными гранями (КУ 2,1–2,5), прозрачные, бледно окрашенные в розовые тона,

Рис. 2. Морфология и возраст (определен методом LA-ICP-MS) циркона из BIF-1: (а) изображение циркона в катодной люминесценции (CL) с местополжением аналитических точек и значениями в них ²⁰⁷Pb-²⁰⁶Pb возраста в млн лет, в скобках – Th/U отношение; (б) гистограмма ²⁰⁷Pb-²⁰⁶Pb возрастов (n – число аналитических точек); (в) диаграмма с конкордией ($T_{Pb} - {}^{207}Pb - {}^{206}Pb$ возраст, $T_c -$ конкордантный U-Pb возраст, $T_1 - U$ -Pb возраст по верхнему пересечению дискордии, $T_2 -$ по нижнему пересечению дискордии). Эллипсы, показанные пунктиром, – дискордантные аналитические точки, не использовавшиеся в расчетах *Fig. 2.* Morphology and age (determined by LA-ICP-MS) of zircon from BIF-1: (a) image of zircons in cathode luminescence (CL) with the position of analytical points and their ²⁰⁷Pb-²⁰⁶Pb age values in Ma; shown in parentheses is a Th/U ratio; (б) histogram of ²⁰⁷Pb-²⁰⁶Pb ages (n – number of analytical points); (в) diagram with Concordia ($T_{Pb} - {}^{207}Pb - {}^{206}Pb$ age calculated from the lower intersection of the Discordia). Ellipses shown by a dashed line are discordant analytical points not used in calculations

Table 2	. Results of L	J-Th-Pb of	geochronol	ogical studie	se (LA-ICP-MS	s) of zircon fr	om BIF-1 (s	ample <i>Э-</i> КС:	20-10/1)					
п/п №	Номер точки анализа	232Th /23811			Изотопные с Isotope	отношения ratios			CqD	В	озраст, Аде,	млн лет Ма		2
No.	Analysis point number	0,/111	²⁰⁷ Pb/ ²⁰⁶ Pb	+1	²⁰⁷ Pb/ ²³⁵ U	+1	²⁰⁶ Pb/ ²³⁸ U	+1		²⁰⁶ Pb/ ²³⁸ U	+1	²⁰⁷ Pb/ ²⁰⁶ Pb	+1	۶ د
-	2	Э	4	5	9	7	8	6	10	11	12	13	14	15
-	55	0,96	0,11181	0,00054	5,05578	0,05624	0,32797	0,00317	0,87	1829	15	1829	6	-0,04
2	24	0,37	0,11539	0,00062	5,4215	0,06544	0,34078	0,0034	0,83	1890	16	1886	6	0,27
ო	21	0,40	0,17015	0,00227	4,96527	0,10803	0,21165	0,0023	0,50	1238	12	2559	22	-56,57
4	116	0,95	0,17754	0,00315	11,14948	0,30031	0,45546	0,00529	0,43	2419	23	2630	28	-9,59
£	22	0,87	0,17778	0,00309	4,83307	0,13386	0,19717	0,00248	0,45	1160	13	2632	28	-60,9
9	100	0,28	0,18029	0,00114	11,20483	0,1519	0,45082	0,00447	0,73	2399	20	2656	10	-11,57
7	40	0,35	0,18283	0,00091	11,02339	0,12481	0,43732	0,00425	0,86	2339	19	2679	ω	-15,12
8	93	0,46	0,183	0,00108	11,56212	0,15049	0,45828	0,00467	0,78	2432	21	2680	6	-11,12
6	19	0,55	0,18311	0,00228	11,3758	0,24032	0,45058	0,00508	0,53	2398	23	2681	20	-12,64
10	9	0,54	0,18378	0,0036	11,66764	0,35492	0,46046	0,00622	0,44	2442	27	2687	32	-10,97
11	58	0,57	0,18379	0,00101	13,09333	0,16178	0,51674	0,00515	0,81	2685	22	2687	6	-0,1
12	28	0,32	0,18397	0,00171	12,04944	0,21831	0,47506	0,00542	0,63	2506	24	2689	15	-8,22
13	63	0,76	0,18407	0,00088	9,8827	0,10859	0,38945	0,00371	0,87	2120	17	2690	ω	-24,8
14	37	0,50	0,18508	0,00097	13,26634	0,15744	0,5199	0,00519	0,84	2699	22	2699	ω	-0,01
15	31	0,51	0,18568	0,00084	13,3174	0,13731	0,52022	0,00496	0,90	2700	21	2704	7	-0,2
16	42	0,52	0,18576	0,00101	11,00805	0,13294	0,42983	0,00413	0,80	2305	19	2705	6	-17,56
17	-	0,51	0,18599	0,00141	13,37393	0,21027	0,5216	0,00572	0,70	2706	24	2707	12	-0,06
18	16	0,56	0,18679	0,00121	13,09558	0,18413	0,50861	0,00534	0,75	2651	23	2714	10	-2,87
19	107	0,58	0,18677	0,00123	12,5928	0,17273	0,48918	0,0047	0,70	2567	20	2714	10	-6,59
20	34	0,13	0,18704	0,00086	13,50578	0,14263	0,52373	0,00491	0,89	2715	21	2716	7	-0,07
21	44	0,42	0,18698	0,00098	13,48415	0,16093	0,52307	0,00521	0,83	2712	22	2716	8	-0,17
22	49	0,61	0,18714	0,00106	13,13512	0,16698	0,5091	0,00517	0,80	2653	22	2717	6	-2,9
23	13	0,35	0,18722	0,00116	12,56325	0,17079	0,48681	0,00508	0,77	2557	22	2718	10	-7,2
24	41	1,08	0,1873	0,00083	13,28982	0,13506	0,51467	0,00485	0,90	2677	21	2719	7	-1,9
25	47	0,55	0,18737	0,00101	13,0562	0,15973	0,50542	0,00509	0,82	2637	22	2719	6	-3,69
26	2	0,70	0,18746	0,00103	12,61443	0,15643	0,48808	0,00492	0,81	2562	21	2720	6	-7,03
27	45	0,53	0,18751	0,00124	13,54158	0,1917	0,52382	0,00544	0,73	2715	23	2720	10	-0,24
28	46	0,61	0,18751	0,0011	13,60628	0,17836	0,52631	0,00548	0,79	2726	23	2720	6	0,24
29	43	0,79	0,18753	0,00091	13,56928	0,15084	0,52482	0,0051	0,87	2720	22	2721	8	-0,05
30	8	0,47	0,18766	0,00198	13,57784	0,26874	0,52498	0,00617	0,59	2720	26	2722	17	-0,11
31	38	0,76	0,1878	0,00088	13,59951	0,14576	0,52524	0,00502	0,89	2721	21	2723	7	-0,08
32	33	0,20	0,18795	0,00111	13,61745	0,18019	0,52555	0,00555	0,80	2723	23	2724	6	-0,09
33	6	0,65	0,18804	0,00132	13,61515	0,20233	0,52525	0,00557	0,71	2721	24	2725	11	-0,19
34	29	1,00	0,18799	0,00093	13,65147	0,15469	0,52671	0,00508	0,85	2728	21	2725	8	0,12
35	36	0,69	0,18831	0,00085	13,71243	0,14199	0,52818	0,00499	0,90	2734	21	2727	7	0,27
36	104	0,79	0,18826	0,00096	13,12748	0,15304	0,5058	0,005	0,85	2639	21	2727	8	-3,96

Таблица 2. Результаты U-Th-Pb геохронологических исследований (LA-ICP-MS) циркона из BIF-1 (проба Э-КС20-10/1)

Продол Table 2(жение таол (continued)	v .													
-	2	с	4	5	9	7	8	6	10	=	12	13	14	15	
37	114	0,80	0,18842	0,00098	12,92779	0,15233	0,49767	0,00483	0,82	2604	21	2728	8	-5,56	
38	108	0,75	0,18853	0,00112	12,86541	0,16649	0,49505	0,00486	0,76	2592	21	2729	6	-6,11	
39	30	1,09	0,18864	0,00094	11,75685	0,13277	0,45205	0,00424	0,83	2404	19	2730	8	-14,29	
40	35	0,76	0,18862	0,00108	13,14937	0,16709	0,50569	0,00501	0,78	2638	21	2730	6	-4,12	
41	59	0,74	0,18873	0,00103	13,75106	0,16902	0,52849	0,00532	0,82	2735	22	2731	6	0,17	
42	94	0,83	0,1888	0,0011	13,72328	0,17525	0,52725	0,00512	0,76	2730	22	2732	6	-0,1	
43	85	0,64	0,18894	0,00095	13,73034	0,15787	0,52713	0,00514	0,85	2729	22	2733	ω	-0,18	
44	27	0,61	0,18918	0,00103	13,26058	0,16249	0,50841	0,00509	0,82	2650	22	2735	ი	-3,8	
45	87	0,38	0,18913	0,00115	13,75464	0,18153	0,52763	0,00519	0,75	2731	22	2735	10	-0,17	
46	110	0,70	0,18923	0,00115	13,304	0,1774	0,50996	0,00519	0,76	2656	22	2735	10	-3,53	
47	17	0,75	0,18939	0,00117	13,81394	0,18807	0,52908	0,00556	0,77	2738	23	2737	10	0,02	
48	7	2,27	0,18953	0,00134	12,35626	0,17954	0,47284	0,00472	0,69	2496	21	2738	11	-10,65	
49	84	0,77	0,18952	0,00111	10,50352	0,1343	0,40205	0,00388	0,75	2178	18	2738	6	-24,04	
50	54	1,04	0,18969	0,00088	13,84627	0,1479	0,52944	0,00508	06'0	2739	21	2739	7	-0,02	
51	111	0,81	0,18958	0,00152	13,8253	0,2257	0,52899	0,0058	0,67	2737	24	2739	13	-0,07	
52	50	0,31	0,1898	0,00195	10,61881	0,19411	0,40576	0,00433	0,58	2196	20	2740	16	-23,41	
53	81	0,36	0,18974	0,00158	13,86204	0,22963	0,52995	0,00573	0,65	2741	24	2740	13	0,04	
54	വ	0,51	0,18986	0,00118	12,13766	0,16497	0,46372	0,00482	0,76	2456	21	2741	10	-12,5	
55	48	0,61	0,19007	0,0023	8,34263	0,18366	0,31831	0,00395	0,56	1781	19	2743	19	-39,97	
56	53	0,59	0,19007	0,00101	12,90052	0,15658	0,49231	0,00503	0,84	2581	22	2743	8	-7,18	
57	56	0,76	0,19012	0,00088	13,90466	0,14775	0,53046	0,00506	0,90	2743	21	2743	7	ŕ	
58	68	0,60	0,1901	0,001	12,89041	0,15174	0,49186	0,00467	0,81	2579	20	2743	8	-7,27	
59	113	0,99	0,19014	0,00106	13,91477	0,17297	0,53079	0,00525	0,80	2745	22	2743	6	0,06	
60	115	0,64	0,19005	0,0011	13,38012	0,17109	0,51062	0,00504	0,77	2659	22	2743	6	-3,71	
61	39	1,04	0,19027	0,001	13,26077	0,15797	0,5055	0,00501	0,83	2637	21	2744	8	-4,76	
62	4	0,71	0,19036	0,00107	13,9466	0,17595	0,5314	0,00538	0,80	2747	23	2745	6	0,09	
63	61	0,79	0,19028	0,00137	13,94626	0,2035	0,53165	0,00521	0,67	2748	22	2745	11	0,16	
64	06	0,33	0,19031	0,00195	14,26498	0,27927	0,54365	0,00647	0,61	2799	27	2745	16	2,42	
65	ю	0,58	0,19054	0,00096	13,96528	0,16071	0,5316	0,00519	0,85	2748	22	2747	8	0,06	
66	70	0,45	0,19053	0,00161	13,98557	0,23529	0,53241	0,0058	0,65	2752	24	2747	13	0,21	
67	103	0,42	0,19051	0,00093	13,93407	0,15479	0,53055	0,00506	0,86	2744	21	2747	8	-0,14	
68	15	0,66	0, 19069	0,00099	12,98943	0,15403	0,49407	0,00498	0,85	2588	21	2748	8	-7,06	
69	69	0,54	0,19071	0,00094	13,97598	0,15696	0,53156	0,00505	0,85	2748	21	2748	8	-0,02	
70	89	0,63	0,19071	0,00233	14,1625	0,30956	0,53853	0,00647	0,55	2777	27	2748	19	1,31	
71	62	0,76	0,19083	0,00095	13,3763	0,1514	0,50843	0,00477	0,83	2650	20	2749	8	-4,42	
72	18	0,65	0,19086	0,00111	13,97897	0,178	0,53124	0,00521	0,77	2747	22	2750	6	-0,14	
73	25	0,86	0,19095	0,00096	14,043	0,16001	0,53337	0,005	0,82	2756	21	2750	8	0,24	
74	57	0,76	0,19091	0,00091	13,33627	0,14549	0,50667	0,00486	0,88	2642	21	2750	8	-4,77	
75	98	0,68	0,19089	0,0016	14,00826	0,23663	0,53229	0,00597	0,66	2751	25	2750	13	0,04	
76	14	0,56	0,19101	0,00093	14,01298	0,15565	0,53212	0,005	0,85	2750	21	2751	8	-0,03	

Окончан Table 2 (иие табл. 2 continued)													
-	2	ε	4	5	9	7	8	ი	10	11	12	13	14	15
77	64	0,75	0,19106	0,0009	14,04897	0,15176	0,53336	0,00502	0,87	2756	21	2751	7	0,18
78	67	0,23	0,19104	0,00164	13,54548	0,23293	0,5144	0,00581	0,66	2675	25	2751	14	-3,39
79	60	0,60	0,19119	0,00101	13,52257	0,15946	0,51301	0,00482	0,80	2669	21	2752	8	-3,69
80	26	0,76	0,19128	0,00111	14,02676	0,17809	0,5319	0,00518	0,77	2749	22	2753	6	-0,18
81	71	0,41	0,1913	0,0009	14,07229	0,15161	0,53359	0,00505	0,88	2757	21	2753	7	0,13
82	86	0,33	0,19127	0,00159	14,02912	0,22969	0,53207	0,00557	0,64	2750	23	2753	13	-0,15
83	92	0,60	0,19126	0,001	14,04149	0,16447	0,53249	0,00503	0,81	2752	21	2753	8	-0,05
84	91	0,68	0,19133	0,00094	14,03992	0,1574	0,53225	0,00517	0,87	2751	22	2754	ω	-0,13
85	32	0,32	0,19146	0,00103	14,07419	0,1699	0,53316	0,00518	0,80	2755	22	2755	6	-
86	65	0,59	0,19156	0,00101	13,51594	0,16165	0,51181	0,00507	0,83	2664	22	2756	8	-4,06
87	106	0,40	0,1916	0,00092	14,07601	0,15408	0,53287	0,0051	0,87	2754	21	2756	8	-0,12
88	78	0,43	0,19177	0,00093	14,09834	0,15657	0,53324	0,00511	0,86	2755	21	2757	8	-0,11
89	72	0,72	0,19183	0,00108	14,09866	0,17397	0,53308	0,00506	0,77	2754	21	2758	6	-0,16
06	105	0,64	0,1919	0,0009	14,14056	0,15241	0,5345	0,00509	0,88	2760	21	2759	7	0,07
91	112	0,66	0,19217	0,00178	14,18088	0,24596	0,53541	0,00548	0,59	2764	23	2761	15	0,11
92	101	0,39	0,19251	0,00129	14,18829	0,19922	0,5347	0,00533	0,71	2761	22	2764	11	-0,14
93	82	0,39	0,19306	0,00211	11,76938	0,2302	0,44225	0,00477	0,55	2361	21	2768	17	-17,57
94	66	0,74	0,19314	0,0014	13,8879	0,21442	0,52159	0,00585	0,73	2706	25	2769	11	-2,81
95	83	0,30	0,19324	0,00132	12,96758	0,18863	0,48669	0,00502	0,71	2556	22	2770	11	-9,33
96	95	1,01	0,19332	0,00132	12,91621	0,18315	0,48459	0,00479	0,70	2547	21	2771	11	-9,75
97	66	0,84	0,1934	0,00133	10,67347	0,15069	0,40032	0,00388	0,69	2171	18	2771	11	-25,48
98	74	0,66	0,19365	0,00092	13,89765	0,15121	0,52056	0,00491	0,87	2702	21	2773	8	-3,18
66	96	0,88	0,19356	0,001	13,40085	0,15694	0,50216	0,00486	0,83	2623	21	2773	8	-6,57
100	102	1,09	0,19369	0,00101	14,38563	0,17083	0,53872	0,0054	0,84	2778	23	2774	8	0,18
101	10	0,20	0,19419	0,00105	14,44208	0,17607	0,53943	0,00533	0,81	2781	22	2778	6	0,13
102	75	0,57	0,19433	0,00104	13,35551	0,1595	0,49851	0,00473	0,79	2607	20	2779	8	-7,52
103	73	0,38	0,19457	0,00107	14,01337	0,17098	0,52243	0,00501	0,79	2709	21	2781	6	-3,17
104	88	0,42	0,19481	0,00147	13,62695	0,21203	0,50743	0,00543	0,69	2646	23	2783	12	-6,04
105	23	0,72	0,19491	0,0016	7,22369	0,11829	0,26897	0,00287	0,65	1536	15	2784	13	-50,24
106	76	0,70	0,19626	0,00111	13,43896	0,16733	0,49669	0,00475	0,77	2600	20	2795	6	-8,51
107	80	0,88	0,19706	0,00151	12,66055	0,2003	0,46604	0,00507	0,69	2466	22	2802	12	-14,41
108	79	2,27	0,1984	0,00159	11,25556	0,17733	0,4115	0,00415	0,64	2222	19	2813	13	-24,79
109	51	0,33	0,20009	0,00092	15,19927	0,16102	0,55097	0,00523	06'0	2829	22	2827	7	0,09
110	52	0,20	0,20083	0,00093	15,30742	0,16329	0,55284	0,00533	0,90	2837	22	2833	7	0,17
111	109	0,41	0,20098	0,00102	13,77501	0,15888	0,49713	0,00476	0,83	2601	20	2834	8	-9,97
112	11	0,64	0,20166	0,00094	15,36858	0,16361	0,55275	0,00526	0,89	2837	22	2840	7	-0,14
113	97	0,47	0,20216	0,0014	15,49497	0,22251	0,55594	0,00554	0,69	2850	23	2844	11	0,26
114	77	0,41	0,20258	0,00204	8,09525	0,14738	0,28982	0,003	0,57	1641	15	2847	16	-47,81
115	20	0,46	0,20264	0,00262	15,45623	0,35055	0,55279	0,00669	0,53	2837	28	2848	20	-0,4
116	12	0,35	0,20398	0,0012	15,64296	0,2067	0,55626	0,0059	0,80	2851	24	2858	6	-0,32

Рис. 3. Морфология и возраст (SHRIMP-II) циркона из BIF-2 (проба Э-КОС1-1/3): (а) CL-изображения циркона с расположением аналитических точек и значениями ²⁰⁷Pb-²⁰⁶Pb возраста в млн лет в них, в скобках – Th/U отношение; (б) гистограмма ²⁰⁷Pb-²⁰⁶Pb возрастов (n – число аналитических точек); (в) диаграмма с конкордией (обозначения см. на рис. 2)

Fig. 3. Morphology and age (SHRIMP-II) of zircon from BIF-2 (sample \exists -KOC1-1/3): (a) CL-images of zircon with the arrangement of analytical points and ²⁰⁷Pb-²⁰⁶Pb age values in Ma, shown in parentheses is a Th/U ratio; (б) histogram of ²⁰⁷Pb-²⁰⁶Pb ages (n – number of analytical points); (в) diagram with Concordia (for symbols, see Fig. 2)

внутреннее строение однородное, исключение составляют несколько зерен с ядрами (этот тип преобладает); 2) короткопризматические зерна (КУ 1–1,5) с частично развитыми гранями и пирамидальными вершинами, имеют розовую окраску разной интенсивности, характерная черта внутреннего строения – осцилляторная зональность (рис. 4, а). Признаков окатанности нет.

По результатам оценки ²⁰⁷Pb-²⁰⁶Pb возраста циркона среди них выделяется три кластера (рис. 4, б; табл. 3). Первый представлен лишь одним зерном с возрастом 2914 ± 7 млн лет. Возраст циркона второго кластера 2,74– 2,72, третьего – 2,64–2,62 млрд лет (рис. 4, в). Аналитические точки циркона второго и третьего кластеров образуют дискордии (рис. 4, в), по верхнему пересечению которых их U-Pb возраст оценивается в 2732 ± 5 и 2639 ± 7 млн лет соответственно. Th/U отношения в цирконе первого кластера – 0,74, второго – 0,22–0,9 (до 2,47), третьего – 0,17–0,51 (табл. 3).

Из образца Э-КОС2-2/1, представленного ребикитовым магнетитовым кварцитом с низким содержанием Fe и Zr (табл. 1), выделено всего 14 зерен циркона, 7 из которых датировано (SHRIMP-II, 10 аналитических точек). По морфологическим особенностям среди них установлено два типа зерен: 1) желтоватые короткопризматические субидиоморфные (КУ 1–1,3) с тонкополосчатой осцилляционной зональностью (преобладают); 2) удлиненные (КУ 2–2,2) полупрозрачные светло-желтые, неправильной формы, однородные, иногда с ядрами, которые хорошо видны в CL (рис. 4, г). Признаков окатанности нет.

По результатам оценки ²⁰⁷Pb-²⁰⁶Pb возраста циркона в этой выборке выделяется два кластера (рис. 4, д; табл. 3). Первый включает 4 зерна с ²⁰⁷Pb-²⁰⁶Pb возрастом 2,98–2,76 млрд лет, возраст второго – 1,87–1,85 млрд лет. U-Pb возраст последнего можно также оценить по верхнему пересечению дискордии в 1855 ± 8 млн лет (рис. 4, е). Цирконы второй возрастной группы, как правило, формируют каймы. Th/U отношения в цирконе первого кластера 0,77–2,27, а второго – 0,01–0,03 (рис. 4, г).

Обсуждение результатов

Во всех трех типах ВІГ КЗП установлен циркон. Среди них выделяется циркон более древний или соизмеримый по возрасту с вмещающими ВІГ-содержащую толщу породами. Такой циркон относится к детритовому.

ТаблиL Table 3	<i>ta 3</i> . Результать . Results of U-TI	ы U-Th-Р h-Рb gec	b reoxp	онологи ogical sti	ческих и udies (SI	Iсследов HRIMP-II)	аний (Sŀ) of zircor	HRIMP-II Is from E) циркон 3IF-2 anc	а из BIF I BIF-3	:-2 и BIF-	ო						
u/⊔ ⁰N	Номер точки анализа	²⁰⁶ Pb ₂ ,	Соде Соде	эржание, r ontent, µg,	икг/г ′g	²³² Th/		Й	зотопные (Isotope	отношени ratios	19				Возраст, Аge,	млн лет Ма		e e
No.	Analysis point number	°, %	П	Th	²⁰⁶ Pb*	²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb	%Ŧ	²⁰⁷ Pb/ ²³⁵ U	%∓	²⁰⁶ Pb/ ²³⁸ U	¥	0 UH	²⁰⁶ Pb/ ²³⁸ U	+1	²⁰⁷ Pb/ ²⁰⁶ Pb	+1	د ۲
-	2	З	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19
							BIF-2 п	poбa / sa	imple Э-K	OC1-1/3								
-	9.1		504	778	221	1,59	0,1889	0,66	13,27	1,3	0,510	1,1	0,86	2655	25	2733	11	3,44
2	2.1		152	06	68	0,61	0,1905	0,41	13,60	1,9	0,518	1,8	0,98	2690	40	2746	7	2,52
ю	6.2		104	64	47	0,64	0,1874	0,54	13,52	2,4	0,523	2,4	0,98	2713	53	2720	6	0,32
4	5.1		528	587	237	1,15	0,1894	0,21	13,67	0,9	0,524	0,9	0,97	2714	19	2737	4	1,00
5	10.2		345	264	156	0,79	0,1899	0,26	13,75	1,4	0,525	1,4	0,98	2721	31	2741	4	0,93
9	11.1		328	250	148	0,79	0,1894	0,27	13,72	1,4	0,525	1,4	0,98	2721	30	2737	4	0,72
7	3.1		163	64	74	0,40	0,1894	0,39	13,73	1,5	0,526	1,4	0,96	2724	31	2737	9	0,60
8	6.1		163	66	74	0,62	0,1891	0,40	13,78	1,1	0,529	1,0	0,93	2735	22	2735	7	-0,03
6	1.1		127	87	58	0,71	0,1880	0,45	13,70	1,1	0,529	1,0	0,92	2735	23	2725	7	-0,48
10	7.2		194	84	88	0,45	0,1890	0,37	13,80	2,3	0,530	2,2	0,99	2739	50	2734	9	-0,26
1	1.2		80	40	37	0,52	0,1885	0,56	13,81	2,1	0,532	2,0	0,96	2748	45	2729	6	-0,85
12	10.1		142	59	66	0,43	0,1885	0,43	13,99	1,2	0,538	1,1	0,94	2776	26	2729	7	-2,13
13	8.1		170	70	80	0,43	0,1883	0,38	14,26	1,2	0,549	1,1	0,95	2822	25	2727	9	-4,27
							BIF-3 np	oofa / sar	mple 3-KC	ЭРП1-3/2								
-	9.1		285	87	117	0,32	0,1768	0,30	11,63	0,9	0,477	0,9	0,95	2514	19	2623	5	5
2	6.1		211	55	92	0,27	0,1780	0,40	12,43	1,4	0,506	1,3	0,96	2641	29	2634	7	0
e	14.1		269	98	117	0,38	0,1786	0,30	12,45	1,3	0,506	1,3	0,97	2639	28	2640	5	0
4	15.1		218	37	95	0,17	0,1788	0,35	12,45	1,0	0,505	0,9	0,94	2635	20	2642	9	0
ъ	10.1		204	91	91	0,46	0,1791	0,36	12,80	1,0	0,519	0,9	0,93	2693	21	2644	9	-2
9	5.1		479	86	156	0,18	0,1790	0,76	9,34	1,1	0,379	0,9	0,74	2069	15	2643	13	25
7	11.1		235	117	105	0,51	0,1815	0,34	12,97	1,0	0,518	0,9	0,94	2692	20	2667	9	-
8	7.2		239	67	105	0,29	0,1820	0,33	12,83	1,5	0,511	1,5	0,97	2662	32	2671	6	0
6	16.1		445	105	197	0,24	0,1833	0,24	13,00	0,9	0,514	0,9	0,97	2676	20	2683	4	0
10	16.2		266	163	115	0,63	0,1852	0,32	12,89	1,0	0,505	1,0	0,95	2635	21	2700	5	3
11	3.2		403	85	170	0,22	0,1862	0,28	12,58	0,9	0,490	0,8	0,95	2571	18	2709	5	9
12	1.2		113	55	51	0,51	0,1874	0,53	13,60	1,2	0,526	1,1	0,90	2726	24	2720	6	0
13	8.1		245	51	40	0,22	0,1801	1,11	4,70	1,5	0,189	1,0	0,66	1117	10	2654	18	63
14	12.2		365	126	95	0,36	0,1817	0,43	7,59	2,1	0,303	2,1	0,98	1707	31	2668	7	41
15	12.1		613	420	247	0,71	0,1874	0,45	12,12	1,0	0,469	0,9	0,88	2479	18	2720	7	11
16	1.1		301	264	138	0,90	0,1880	0,56	13,82	2,0	0,533	1,9	0,96	2755	43	2725	6	-
17	13.1		362	212	155	0,60	0,1884	0,27	12,92	1,4	0,497	1,3	0,98	2602	28	2728	4	9
18	7.1		729	1734	323	2,46	0,1887	0,20	13,42	1,1	0,516	1,1	0,98	2681	24	2731	ю	2
19	4.1		675	559	286	0,86	0,1891	0,70	12,87	1,1	0,494	0,8	0,76	2586	17	2734	11	7

	-	2	ю	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19
I	20	2.1		333	260	150	0,81	0,1894	0,32	13,69	1,0	0,524	0,9	0,95	2717	21	2737	5	-
	21	3.1		180	129	89	0,74	0,2111	0,42	16,70	1,7	0,574	1,6	0,97	2923	39	2914	7	0
									BIF-3 Э-	-KOC2-2/	-								
	-	4.2		657	21	195	0,03	0,1130	0,39	5,38	1,0	0,345	0,9	0,91	1910	14	1849	7	-4
	2	7.2		1016	16	296	0,02	0,1137	0,30	5,31	1,1	0,339	1,1	0,96	1881	17	1859	5	-
	3	1.1		41	0	12	0,01	0,1145	1,56	5,23	2,2	0,331	1,6	0,71	1845	25	1872	28	2
	4	5.1		227	372	43	1,69	0,1782	0,40	5,45	5,1	0,222	5,1	1,00	1292	60	2636	7	56
	5	3.1		259	98	102	0,39	0,1877	0,42	11,84	3,0	0,458	3,0	0,99	2429	61	2722	7	13
	6	7.1		92	200	43	2,24	0,1926	0,53	14,33	1,3	0,540	1,2	0,91	2781	26	2765	6	-1
	7	6.2		116	89	55	0,79	0,1965	0,72	15,02	2,1	0,554	2,0	0,94	2844	45	2797	12	-2
	8	6.1		45	79	22	1,79	0,1994	0,77	15,16	1,7	0,552	1,5	0,89	2832	34	2821	12	0
	6	4.1		60	45	30	0,77	0,2196	1,48	17,70	2,9	0,585	2,5	0,86	2967	58	2978	24	0
	Іримеча	<i>зние</i> . Рb _° и Рb*	указываю	т обыкно	венную и	радиоген	ную сост	авляющи.	е соотве-	тственно.	Ошибки	приведен	ни ялд ин	тервала .	1σ.				

Окончание табл. 3

Table 3 (continued)

D – степень дискордантности D = 100 {[t(²⁰⁷Pb/²⁰⁶Pb)] / [t(²⁰⁶Pb/²³⁸U)] – 1}. RhO – коэффициент корреляции отношений ²⁰⁷Pb/²³⁸U - ²⁰⁶Pb/²³⁸U and Pb* indicate the ordinary and radiogenic components, respectively. The errors are given for the interval 10. Ошибка калибровки стандарта – 0,54 %. Поправка на обыкновенный свинец проведена по измеренному ²⁰⁴Pb.

RhO – ratio correlation coefficient ²⁰⁷Pb/²³⁵U-²⁰⁶Pb/²³⁸U. *Note:* Pb_, and Pb* indicate the ordinary and radiogenic components, respectively. The errors are given Standard calibration error – 0.54 %. Correction for common lead was made from the measured ^{20,4}Pb. D – degree of discordance D = 100 {[t²⁰⁷Pb/²⁰⁸Pb)] / [t²⁰⁶Pb/²³⁸U)] – 1}. RhO – ratio correlation coeffi Его доля, как правило, составляет около 5 %, однако в изученной пробе из BIF-2 детритовый циркон отсутствует, а в одной из проб BIF-3 его доля доходит до 28 % (4 зерна из 14). Но большая часть изученного в BIF циркона имеет более молодой возраст, чем ассоциирующие или секущие их породы, и рассматривается, следовательно, как метаморфогенный.

Детритовый циркон, если он присутствует, установлен в виде единичных (1-15) зерен. В нем нет признаков окатанности, что может свидетельствовать о близком его переносе. Возраст детритового циркона в BIF-1 – около 2,84 млрд лет, в BIF-2 он не установлен, а в BIF-3 его возраст варьирует в промежутке 2,98-2,75 млрд лет. Таким образом, в BIF-1 детритовый циркон близок по возрасту (2,87-2,84 млрд лет) к вмещающей базальт-коматиитовой толще, тогда как в BIF-3 установлен как местный источник циркона (ТТГ с возрастом около 2,79 млрд лет), так и экзотический – с возрастом 2,98-2,91 млрд лет. Такие древние породы не отмечены в обрамлении КЗП [Лобач-Жученко и др., 2000; Бибикова и др., 2005], но их существование предполагается, исходя из Sm-Nd систематики ТТГ [Лобач-Жученко и др., 2000].

Во всех группах ВІF установлен циркон с возрастом 2,75–2,72 млрд лет, синхронный с формированием либо ранних гранитов (2,72 млрд лет), либо кислых вулканитов (2,74–2,76 млрд лет) и, соответственно, имеющий метаморфогенную природу. Наличие в них тонкой осцилляторной зональности и Th/U отношений > 0,2 связывается с особенностями неоархейского метаморфизма. Подобные характеристики отмечаются у цирконов в ряде метаморфических комплексов, и, следовательно, они не являются универсальными для зерен магматической природы [Каулина, 2010; Yakymchuk et al., 2018].

Спорадически в BIF проявляется также циркон с возрастом 2,65-2,64; 2,45-2,41 и 1,86-1,83 млрд лет, с типичными для метаморфогенных разностей характеристиками (отсутствие зональной структуры, низкие (< 0,2) Th/U отношения). Время формирования первых отчетливо коррелируется с внедрением поздних фаз гранитов; вторых - возможно, связано с основным магматизмом, но этот вопрос требует более тщательного изучения; последних - хорошо параллелизуется с феннийской орогенией в Свекофеннском аккреционном орогене. Обращает на себя внимание, что локальное проявление тектоно-термальных процессов, сопоставимых по времени со свекофеннскими, в центральной части Карельского кратона ранее не фиксировалось.

16 Transactions of the Karelian Research Centre of the Russian Academy of Sciences. 2023. No. 2 Проведенные исследования цирконов из BIF Костомукшского зеленокаменного пояса позволяют констатировать: 1) в этих метаморфизованных осадочных породах присутствует как детритовый, так и метаморфогенный циркон; 2) при формировании BIF-1 в бассейн осадконакопления поступал только местный детритовый материал, а при становлении наиболее рудоносной ассоциации BIF-3 в бассейн наряду с местным попадал и экзотический детритовый

Рис. 4. Изображения циркона в CL (кроме обозначенных Opt – в проходящем свете и BSE – во вторичных электронах) из BIF-3 (пробы Э-КОРП-1-3/1 (а), Э-КОС2-2/13 (г)) с расположением аналитических точек и значениями ²⁰⁷Pb-²⁰⁶Pb возраста в млн лет в них, в скобках – Th/U отношение; (б, д) гистограммы ²⁰⁷Pb-²⁰⁶Pb возрастов цирконов (n – число аналитических точек); (в, е) диаграммы с конкордией для цирконов (обозначения см. на рис. 2). Серые эллипсы – дискордантные аналитические точки

Fig. 4. CL-images of zircon (except for Opt – images in transmitted light and BSE – in secondary electrons) from BIF-3 (samples \Im -KOP Π -1-3/1 (a), \Im -KOC-2/13 (Γ)) with the arrangement of analytical points and ²⁰⁷Pb-²⁰⁶Pb age values in Ma; shown in parentheses is a Th/U ratio; (\Im , \square) histograms of ²⁰⁷Pb-²⁰⁶Pb ages of zircons (n – number of analytical points); (B, e) Concordia diagrams for zircons (for symbols, see Fig. 2). Grey ellipses – discordant analytical points

17

материал; 3) все породы Костомукшского зеленокаменного комплекса, включая ВІҒ, претерпели неоднократные метаморфические преобразования как в архее (2,72 и 2,64 млрд лет), так и в палеопротерозое (около 2,4 и 1,85 млрд лет), проявленные в формировании разновозрастных генераций циркона. При этом архейский метаморфогенный циркон установлен во всех трех возрастных группах ВІҒ, а палеопротерозойский проявлен локально.

Авторы благодарят сотрудников ЛХАИ ГИН РАН (г. Москва) К. Г. Ерофееву, В. С. Шешукова, А. С. Дубенского и ЦИИ ВСЕГЕИ (г. Санкт-Петербург) А. Н. Ларионова за проведение работ по датированию цирконов и консультации при использовании результатов, а также рецензентов – за замечания, которые позволили улучшить статью.

Литература

Балтыбаев Ш. К. Свекофеннский аккреционный ороген: современные представления о его строении и эволюции // Труды Карельского научного центра РАН. 2022. № 5. С. 18–21. doi: 10.17076/ geo1664

Балтыбаев Ш. К. Свекофеннский ороген Фенноскандинавского щита: вещественно-изотопная зональность и ее тектоническая интерпретация // Геотектоника. 2013. № 6. С. 44–59. doi: 10.7868/ S0016853X13060027

Бибикова Е. В., Самсонов А. В., Петрова А. Ю., Кирнозова Т. И. Геохронология архея западной Карелии // Стратиграфия. Геологическая корреляция. 2005. Т. 13, № 5. С. 3–20.

Вревский А. Б. Ликвационная дифференциация коматиитов: особенности изотопно-геохимического состава пород, возраст и петролого-геодинамические следствия (на примере Костомукшской зеленокаменной структуры, Фенноскандинавский щит) // Записки РМО. 2022. Т. 151, № 6. С. 1–18. doi: 10.31857/S0869605522060090

Горьковец В. Я., Раевская М. Б., Белоусов Е. Ф., Инина К. А. Геология и металлогения района Костомукшского железорудного месторождения / Отв. ред. А. И. Богачев. Петрозаводск: Карелия, 1981. 143 с.

Горьковец В. Я., Раевская М. Б., Володичев О. И., Голованова Л. С. Геология и метаморфизм железисто-кремнистых формаций Карелии / Отв. ред. М. М. Стенарь. Л.: Наука, 1991. 173 с.

Железисто-кремнистые формации докембрия европейской части СССР. Типы формаций / Ред. Н. А. Плаксенко, М. А. Ярощук. Киев: Наукова думка, 1988. 192 с.

Каулина Т. В. Образование и преобразование циркона в полиметаморфических комплексах. Апатиты: КНЦ РАН, 2010. 144 с.

Кевлич В. И. Выделение концентратов и мономинеральных фракций из руд и горных пород Карелии. Петрозаводск: КарНЦ РАН, 2022. 257 с. Кожевников В. Н. Архейские зеленокаменные пояса Карельского кратона как аккреционные орогены. Петрозаводск: КарНЦ РАН, 2000. 223 с.

Кожевников В. Н., Бережная Н. Г., Пресняков С. Л., Лепехина Е. Н., Антонов А. В., Сергеев С. А. Геохронология циркона (SHRIMP-II) из архейских стратотектонических ассоциаций в зеленокаменных поясах Карельского кратона: роль в стратиграфических и геодинамических реконструкциях // Стратиграфия. Геологическая корреляция. 2006. Т. 14, № 3. С. 19–40.

Костомукшский рудный район (геология, глубинное строение и минерагения) / Ред. В. Я. Горьковец, Н. В. Шаров. Петрозаводск: КарНЦ РАН, 2015. 322 с.

Кулешевич Л. В., Фурман В. Н. Золоторудное месторождение Таловейс в Костомукшской докембрийской зеленокаменной структуре (Карелия) // Геология рудных месторождений. 2009. Т. 51, № 1. С. 58–76.

Куликов В. С., Светов С. А., Слабунов А. И., Куликова В. В., Полин А. К., Голубев А. И., Горьковец В. Я., Иващенко В. И., Гоголев М. А. Геологическая карта Юго-Восточной Фенноскандии масштаба 1:750 000: новые подходы к составлению // Труды Карельского научного центра РАН. 2017. № 2. С. 3–41. doi: 10.17076/geo444

Лобач-Жученко С. Б., Арестова Н. А., Милькевич Р. И., Левченков О. А., Сергеев С. А. Стратиграфический разрез Костомукшской структуры Карелии (верхний архей), реконструированный на основе геохронологических, геохимических и изотопных данных // Стратиграфия. Геологическая корреляция. 2000. Т. 8, № 4. С. 3–10.

Медведев П. В. Железорудные формации докембрия: палеоэкологический и палеонтологический аспекты // Труды Карельского научного центра РАН. 2022. № 5. С. 95–98. doi: 10.17076/geo1676

Никитина Л. П., Левский Л. К., Лохов К. И., Беляцкий Б. В., Журавлев В. А., Лепехина Е. Н., Антонов А. В. Протерозойский щелочно-ультраосновной магматизм восточной части Балтийского щита // Петрология. 1999. Т. 7, № 3. С. 252–275.

Слабунов А. И., Кервинен А. В., Нестерова Н. С., Егоров А. В., Максимов О. А., Медведев П. В. Полихронная история формирования неоархейских полосчатых железистых кварцитов главной рудной толщи Костомукшского зеленокаменного пояса: возраст цирконов и акцессорные минералы // Труды Карельского научного центра РАН. 2022. № 5. С. 139–143. doi: 10.17076/geo1666

Слабунов А. И., Нестерова Н. С., Егоров А. В., Кулешевич Л. В., Кевлич В. И. Геохимия, геохронология цирконов и возраст архейской железорудной толщи Костомукшского зеленокаменного пояса Карельского кратона Фенноскандинавского щита // Геохимия. 2021. Т. 66, № 4. С. 291–307. doi: 10.31857/ S0016752521040063

Слабунов А. И., Лобач-Жученко С. Б., Бибикова Е. В., Балаганский В. В., Сорьонен-Вард П., Володичев О. И., Щипанский А. А., Светов С. А., Чекулаев В. П., Арестова Н. А., Степанов В. С. Архей Балтийского щита: геология, геохронология, геодинамические обстановки // Геотектоника. 2006. № 6. С. 1–29. doi: 10.1134/S001685210606001X

Степанова А. В., Сальникова Е. Б., Самсонов А. В., Ларионова Ю. О., Егорова С. В., Саватенков В. М. Дайки долеритов 2404 млн лет на Карельском кратоне – фрагмент палеопротерозойской крупной магматической провинции // ДАН. 2017. Т. 472, № 2. С. 185–191. doi: 10.7868/S0869565217020232

Чернов В. М. Стратиграфия и условия осадконакопления вулканогенных (лептитовых) железистокремнистых формаций Карелии. М.-Л.: Наука, 1964. 104 с.

Andersen T. ComPbCorr: Software for common lead correction of U-Th-Pb analyses that do not report ²⁰⁴Pb // Laser ablation ICP-MS in the Earth sciences: Current practices and outstanding issues / Ed. P. J. Sylvester. Mineralogical Association of Canada. 2008. Vol. 40. P. 312–314.

Andersen T. Correction of common lead in U–Pb analyses that do not report 204 Pb // Chem. Geol. 2002. Vol. 192. P. 59–79. doi: 10.1016/S0009-2541(02) 00195-X

Bekker A., Kovalick A. Ironstones and iron formations // Encyclopedia of Geology (2nd ed.) / Eds. D. Alderton, S. A. Elias. Oxford: Academic Press, 2021. P.914–921.doi: 10.1016/B978-0-08-102908-4.00199-5

Bekker A., Slack J. F., Planavsky N., Krapez B., Hofmann A., Konhauser K. O., Rouxel O. J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric // Econ. Geol. 2010. Vol. 105. P. 467–508. doi: 10.2113/gsecongeo.105.3.46

Black L. P., Kamo S. L., Allen C. M., Aleinikoff J. N., Davis D. W., Korsch R. J., Foudoulis C. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology // Chem. Geol. 2003. Vol. 200. P. 155–170. doi:10.1016/ S0009-2541(03)00165-7

Elhlou S., Belousova E., Griffin W. L., Pearson N. J., Riley S. Y. Trace element and isotopic composition of GJ-red zircon standard by laser ablation // Geochim. Cosmochim. Acta. 2006. Vol. 70. A158. doi: 10.1016/j. gca.2006.06.1383

Höltta P., Heilimo E., Huhma H., Kontinen A., Mertanen S., Mikkola P., Paavola J., Peltonen P., Semprich J., Slabunov A., Sorjonen-Ward P. The Archaean Karelia and Belomorian Provinces, Fennoscandian Shield // Evolution of Archean Crust and Early Life / Eds. Y. Dilek, H. Furnes. Modern Approaches in Solid Earth Sciences (7). Springer, 2014. P. 55–102. doi: 10.1007/978-94-007-7615-9 3

Horstwood M. S. A., Kosler J., Gehrels G., Jackson S. E., McLean N. M., Paton Ch., Pearson N. J., Sircombe K., Sylvester P., Vermeesch P., Bowring J. F., Condon D. J., Schoene B. Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology – uncertainty propagation, age interpretation and data reporting // Geostand. Geoanalytical Res. 2016. Vol. 40(I. 3). P. 311–332. doi: 10.1111/j.1751-908X.2016.00379.x

Jackson S. E., Pearson N. J., Griffin W. L., Belousova E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology // Chem. Geol. 2004. Vol. 211. P. 47–69. doi: 10.1016/j.chemgeo.2004.06.017

Konhauser K. O., Planavsky N. J., Hardisty D. S., Robbinsa L. J., Warcholaa T. J., Haugaarda R., Lalondee S. V., Partinf C. A., Oonkg P. B. H., Tsikosg H., *Lyonsh T. W., Bekkerh A., Johnsoni C. M.* Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history // Earth-Science Reviews. 2017. Vol. 172. P. 140–177. doi: 10.1016/j.earscirev. 2017.06.012

Larionov A. N., Andreichev V. A., Gee D. G. The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite // The Neoproterozoic Timanide Orogen of Eastern Baltica / Eds D. G. Gee, V. Pease. Geological Society London Memoirs. 2004. Vol. 30(1). P. 69–74. doi: 10.1144/GSL. MEM.2004.030.01.07

Levskii L. K., Skublov S. G., Gembitskaya I. M. Isotopic-geochemical study of zircons from metabasites of the Kontokki dike complex: age of regional metamorphism in the Kostomuksha structure // Petrology. 2009. Vol. 17, no. 7. P. 669–683. doi: 10.1134/ S0869591109070030

Ludwig K. R. Isoplot v.4.15: A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 2008. No. 4.

Puchtell. S., Hofmann A. W., Mezger K., Jochum K. P., Shchipansky A. A., Samsonov A. V. Oceanic plateau model for continental crustal growth in the Archaean: A case study from the Kostomuksha greenstone belt, NW Baltic Shield // Earth Planet. Sci. Lett. 1998. Vol. 155. P. 57–74. doi: 10.1016/S0012-821X(97)00202-1

Sheshukov V. S., Kuzmichev A. B., Dubenskiy A. S., Okina O. I., Degtyarev K. E., Kanygina N. A., Kuznetsov N. B., Romanjuk T. V., Lyapunov S. M. U-Pb zircon dating by LA-SF-ICPMS at Geological Institute GIN RAS (Moscow) // 10th Int. Conference of the Analysis of Geological and Environmental Materials: Book of Abstracts. Sydney, 2018. P. 63.

Slabunov A. I., Egorov A. V., Nesterova N. S. Geochemical types of Archean banded iron formations and the geodynamic settings of the basins, Kostomuksha Greenstone Belt, Karelian Craton, Russia // Proceedings of 4th Kazan Golovkinsky Stratigraphic Meeting. Sedimentary Earth Systems: Stratigraphy, Geochronology, Petroleum Resources. Kazan, 2020. P. 256–262. doi: 10.26352/E922

Sláma J., Košler J., Condon D. J., Crowley J. L., Gerdes A., Hanchar J. M., Horstwood M. S. A., Morris G. A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M. N., Whitehouse M. J. Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis // Chem. Geol. 2008. Vol. 249. P. 1–35. doi: 10.1016/J.CHEMGEO.2007.11.005

Stacey J. S., Kramers J. D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth Planet. Sci. Lett. 1975. Vol. 26. P. 207–221. doi: 10.1016/0012-821X(75)90088-6

Steiger R. H., Jäger E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett. 1977. Vol. 36. P. 359–362. doi: 10.1016/0012-821X(77) 90060-7

Stepanova A. V., Samsonov A. V., Salnikova E. B., Puchtel I. S., Larionova Y. O., Larionov A. N., Stepanov V. S., Shapovalov Y. B., Egorova S. V. Palaeoproterozoic continental MORB-type tholeiites in the Karelian Craton: Petrology, geochronology, and tectonic setting // J. Petrol. 2014. Vol. 55(9). P. 1719–1751. doi: 10.1093/petrology/egu039

Soderlund U., Johansson L. A simple way to extract baddeleyite (ZrO2) // Geochem. Geophys. Geosystems. 2002. Vol. 3. doi: 10.1029/2001GC000212

Van Achterbergh E., Ryan C. G., Jackson S. E., Griffin W. L. Data reduction software for LA-ICP-MS: appendix // LA-ICP-MS in the Earth Sciences: Principles and Applications / Ed. P. J. Sylvester. Mineralogical Association of Canada Short Course Series. 2001. Vol. 29. P. 239–243.

Wiedenbeck M. P. A., Corfu F., Griffin W. L., Meier M., Oberli F., von Quadt A., Roddick J. C., Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses // Geostand. Geoanalytical Res. 1995. Vol. 19. P. 1–23. doi: 10.1111/j.1751-908X.1995.tb00147.x

Williams I. S. U-Th-Pb Geochronology by ion microprobe // Rev. Econ. Geol. 1998. Vol. 7. P. 1–35.

Yakymchuk C., Kirkland C. L., Clark C. Th/U ratios in metamorphic zircon // J. Metamorph. Geol. 2018. Vol. 36. P. 715–737. doi: 10.1111/jmg.12307

References

Andersen T. ComPbCorr: Software for common lead correction of U-Th-Pb analyses that do not report ²⁰⁴Pb. *Sylvester P. J. (ed.).* Laser ablation ICP-MS in the Earth sciences: Current practices and outstanding issues. Mineralogical Association of Canada. 2008;40:312–314.

Andersen T. Correction of common lead in U–Pb analyses that do not report ²⁰⁴Pb. *Chem. Geol.* 2002;192: 59–79. doi: 10.1016/S0009-2541(02)00195-X

Baltybaev Sh. K. Svecofennian accretion orogen: Modern views on its structure and evolution. *Trudy Karel'skogo nauchnogo tsentra RAN = Transactions of Karelian Research Centre RAS.* 2022;5:18–21. doi: 10.17076/geo1664 (In Russ.)

Baltybaev Sh. K. Svecofennian Orogen of the Fennoscandian Shield: Compositional and isotopic zoning and its tectonic interpretation. *Geotektonika = Geotectonics*. 2013;6:44–59. doi: 10.1134/S0016852113060022 (In Russ.)

Bekker A., Kovalick A. Ironstones and iron formations. Alderton D., Elias S. A. (eds.). Encyclopedia of Geology (2nd ed.). Oxford: Academic Press; 2021. P.914–921.doi: 10.1016/B978-0-08-102908-4.00199-5

Bekker A., Slack J. F., Planavsky N., Krapez B., Hofmann A., Konhauser K. O., Rouxel O. J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric. *Econ. Geol.* 2010;105:467–508. doi: 10.2113/gsecongeo. 105.3.46

Black L. P., Kamo S. L., Allen C. M., Aleinikoff J. N., Davis D. W., Korsch R. J., Foudoulis C. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. *Chem. Geol.* 2003;200:155–170. doi: 10.1016/ S0009-2541(03)00165-7

Bibikova E. V., Petrova A. Yu., Kirnozova T. I., Samsonov A. V. The Archean geochronology of Western Karelia. Stratigr. Geol. Correl. 2005;13(5):459–475. (In Russ.) *Chernov V. M.* Stratigraphy and sedimentation conditions of volcanogenic (leptite) ferruginous-siliceous formations of Karelia. Moscow-Leningrad: Nauka; 1964. 104 p. (In Russ.)

Elhlou S., Belousova E., Griffin W. L., Pearson N. J., Riley S. Y. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. *Geochim. Cosmochim. Acta.* 2006;70:158. doi: 10.1016/j. gca.2006.06.1383

Gor'kovets V. Ya., Raevskaya M. B., Belousov E. F., Inina K. A. Geology and metallogeny of the Kostomuksha iron ore deposit area. Petrozavodsk: Karelia; 1981. 143 p. (In Russ.)

Gor'kovets V. Ya., Raevskaya M. B., Volodichev O. I., Golovanova L. S. Geology and metamorphism of cherty iron-formations of Karelia. Leningrad: Nauka; 1991. 173 p. (In Russ.)

Gor'kovets V. Ya., Sharov N. V. (eds). Kostomuksha ore district: Geology, deep structure, and metallogeny. Petrozavodsk: KarRC RAS; 2015. 322 p. (In Russ.)

Höltta P., Heilimo E., Huhma H., Kontinen A., Mertanen S., Mikkola P., Paavola J., Peltonen P., Semprich J., Slabunov A., Sorjonen-Ward P. The Archaean Karelia and Belomorian Provinces, Fennoscandian Shield. *Dilek Y., Furnes H. (eds.)*. Evolution of Archean crust and early life. Modern Approaches in Solid Earth Sciences (7). Springer; 2014. P. 55–102. doi: 10.1007/978-94-007-7615-9 3

Horstwood M. S. A., Kosler J., Gehrels G., Jackson S. E., McLean N. M., Paton Ch., Pearson N. J., Sircombe K., Sylvester P., Vermeesch P., Bowring J. F., Condon D. J., Schoene B. Community-derived standards for LA-ICP-MSU-(Th-)Pb geochronology – uncertainty propagation, age interpretation and data reporting. *Geostand. Geoanalytical Res.* 2016;40(I.3):311–332. doi: 10.1111/j.1751-908X.2016.00379.x

Jackson S. E., Pearson N. J., Griffin W. L., Belousova E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. *Chem. Geol.* 2004;211:47–69. doi: 10.1016/j.chemgeo.2004.06.017

Kaulina T. V. Formation and recrystallization of zircons in polymetamorphic complexes. Apatity: KSC RAS; 2010. 144 p. (In Russ.)

Kevlich V.I. Separation of concentrates and monomineral fractions from ore and rocks in Karelia. Petrozavodsk: KarRC RAS; 2022. 257 p. (In Russ.)

Konhauser K. O., Planavsky N. J., Hardisty D. S., Robbinsa L. J., Warcholaa T. J., Haugaarda R., Lalondee S. V., Partinf C. A., Oonkg P. B. H., Tsikosg H., Lyonsh T. W., Bekkerh A., Johnsoni C. M. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. *Earth-Science Reviews*. 2017;172:140–177. doi: 10.1016/j.earscirev. 2017.06.012

Kozhevnikov V. N. Archean greenstone belts of the Karelian craton as accretion orogenes. Petrozavodsk: KarRC RAS; 2000. 223 p. (In Russ.)

Kozhevnikov V. N., Berezhnaya N. G., Presnyakov S. L., Lepekhina E. N., Antonov A. V., Sergeev S. A. Geochronology (SHRIMP II) of zircons from Archean stratotectonic associations of Karelian Greenstone Belts: Significance for stratigraphic and geodynamic

reconstructions. *Stratigr. Geol. Correl.* 2006;14(3):240–259. doi: 10.1134/S0869593806030026

Kuleshevich L. V., Furman V. N. The Taloveis gold deposit in the Precambrian Kostomuksha Greenstone Belt, Karelia. *Geologiya rudnykh mestorozhdenii = Geology of Ore Deposits*. 2009;51(1):51–67. doi: 10.1134/S1075701509010048 (In Russ.)

Kulikov V. S., Svetov S. A., Slabunov A. I., Kulikova V. V., Polin A. K., Golubev A. I., Gor'kovets V. Ya., Ivashchenko V. I., Gogolev M. A. Geological map of Southeastern Fennoscandia (scale 1:750 000): A new approach to map compilation. *Trudy Karel'skogo* nauchnogo tsentra RAN = Transactions of Karelian Research Centre RAS. 2017;2:3–41. doi: 10.17076/ geo444 (In Russ.)

Larionov A. N., Andreichev V. A., Gee D. G. The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite. Gee D. G., Pease V. (eds.). The Neoproterozoic Timanide Orogen of Eastern Baltica. Geological Society London Memoirs. 2004;30(1):69–74. doi: 10.1144/GSL. MEM.2004.030.01.07

Levskii L. K., Skublov S. G., Gembitskaya I. M. Isotopic–geochemical study of zircons from metabasites of the Kontokki dike complex: age of regional metamorphism in the Kostomuksha structure. *Petrology.* 2009;17(7):669–683. doi: 10.1134/S0869591109070030

Lobach-Zhuchenko S. B., Arestova N. A., Mil'kevich R. I., Levchenkov O. A., Sergeev S. A. Stratigraphy of the Kostomuksha Belt in Karelia (Upper Archean) as inferred from geochronological, geochemical, and isotopic data. *Stratigr. Geol. Correl.* 2000;8(4):319–326. (In Russ.)

Ludwig K. R. Isoplot v.4.15: A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication; 2008. No. 4.

Medvedev P. V. Precambrian iron formations: Paleoecological and pale-ontological aspects. *Trudy Karel'skogo nauchnogo tsentra RAN = Transactions of Karelian Research Centre RAS.* 2022;5:95–98. doi: 10.17076/geo1676 (In Russ.)

Nikitina L. P., Levskii L. K., Lokhov K. I., Belyatskii B. V., Zhuravlev V. A., Lepekhina E. N., Antonov A. V. Proterozoic alkaline-ultramafic magmatism in the eastern part of the Baltic Shield. *Petrologiya* = *Petrology*. 1999;7(3):252–275. (In Russ.)

Plaksenko N. A., Yaroshchyuk M. A. (eds.) Precambrian Ferruterous-siliceous formations of the European part of the USSR. Types of formations. Naukova Dumka: Kiev; 1988. (In Russ.)

Puchtel I. S., Hofmann A. W., Mezger K., Jochum K. P., Shchipansky A. A., Samsonov A. V. Oceanic plateau model for continental crustal growth in the Archaean: A case study from the Kostomuksha greenstone belt, NW Baltic Shield. *Earth Planet. Sci. Lett.* 1998;155:57– 74. doi: 10.1016/S0012-821X(97)00202-1

Sheshukov V. S., Kuzmichev A. B., Dubenskiy A. S., Okina O. I., Degtyarev K. E., Kanygina N. A., Kuznetsov N. B., Romanjuk T. V., Lyapunov S. M. U-Pb zircon dating by LA-SF-ICPMS at Geological Institute GIN RAS (Moscow). 10th Int. Conference of the Analysis of Geological and Environmental Materials: Book of Abstracts. Sydney; 2018. P. 63. Slabunov A. I., Egorov A. V., Nesterova N. S. Geochemical types of Archean banded iron formations and the geodynamic settings of the basins, Kostomuksha Greenstone Belt, Karelian Craton, Russia. Proceedings of 4th Kazan Golovkinsky Stratigraphic Meeting. Sedimentary Earth Systems: Stratigraphy, Geochronology, Petroleum Resources. Kazan; 2020. P. 256–262. doi: 10.26352/E922

Slabunov A. I., Kervinen A. V., Nesterova N. S., Egorov A. V., Maksimov O. A., Medvedev P. V. Polychronous evolution of Neoarchean banded iron formation in the main ore sequence of the Kostomuksha Greenstone Belt: The age of zircons and accessory minerals. *Trudy Karel'skogo nauchnogo tsentra RAN = Transactions of Karelian Research Centre RAS.* 2022;5:139–143. doi: 10.17076/geo1666 (In Russ.)

Slabunov A. I., Nesterova N. S., Egorov A. V., Kuleshevich L. V., Kevlich V. I. Age of the Archean strata with banded iron formation in the Kostomuksha Greenstone Belt, Karelian Craton, Fennoscandian Shield: constraints on the geochemistry and geochronology of zircons. *Geochemistry International*. 2021;59(4):341–356. doi: 10.1134/S0016702921040066

Slabunov A. I., Volodichev O. I., Svetov S. A., Stepanov V. S., Lobach-Zhuchenko S. B., Chekulaev V. P., Arestova N. A., Bibikova E. V., Balagansky V. V., Sorjonen-Ward P., Shchipansky A. A. The Archean of the Baltic Shield: Geology, geochronology, and geodynamic settings. *Geotectonics*. 2006;40(6):409–433. doi: 10.1134/S001685210606001X

Sláma J., Košler J., Condon D. J., Crowley J. L., Gerdes A., Hanchar J. M., Horstwood M. S. A., Morris G. A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M. N., Whitehouse M. J. Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis. *Chem. Geol.* 2008;249:1–35. doi: 10.1016/J.CHEMGEO.2007.11.005

Soderlund U., Johansson L. A simple way to extract baddeleyite (ZrO2). *Geochem. Geophys. Geosystems.* 2002;3. doi: 10.1029/2001GC000212

Stacey J. S., Kramers J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth Planet. Sci. Lett.* 1975;26:207–221. doi: 10.1016/0012-821X(75)90088-6

Steiger R. H., Jäger E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. *Earth Planet. Sci. Lett.* 1977;36:359–362. doi: 10.1016/0012-821X(77) 90060-7

Stepanova A. V., Sal'nikova E. B., Samsonov A. V., Larionova Yu. O., Egorova S. V., Savatenkov V. M. The 2404 Ma Doleritic Dykes in the Karelian Craton: A fragment of a Paleoproterozoic large igneous province. Doklady Earth Sciences. 2017;472(2):185–191. doi: 10.7868/S0869565217020232 (In Russ.)

Stepanova A. V., Samsonov A. V., Salnikova E. B., Puchtel I. S., Larionova Y. O., Larionov A. N., Stepanov V. S., Shapovalov Y. B., Egorova S. V. Palaeoproterozoic continental MORB-type tholeiites in the Karelian Craton: Petrology, geochronology, and tectonic setting. J. Petrol. 2014;55(9):1719–1751. doi: 10.1093/ petrology/egu039 Van Achterbergh E., Ryan C. G., Jackson S. E., Griffin W. L. Data reduction software for LA-ICP-MS: appendix. Sylvester P. J. (ed.). LA-ICP-MS in the Earth Sciences: Principles and Applications. Mineralogical Association of Canada Short Course Series. 2001;29:239–243.

Williams I. S. U-Th-Pb Geochronology by Ion Microprobe. Rev. Econ. Geol. 1998;7:1–35.

Vrevskii A. B. Liquid immiscibility in komatiites: Isotopic and geochemical features of rocks, age, petrological and geodynamic implications (a case of the Kostomuksha Greenstone Belt, Fennoscandian Shield). *Zapiski RMO = Proceedings of the Russian Minera*-

logical Society. 2022;151(6):1–18. doi: 10.31857/ S0869605522060090 (In Russ.)

Wiedenbeck M. P. A., Corfu F., Griffin W. L., Meier M., Oberli F., von Quadt A., Roddick J. C., Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. *Geostand. Geoanalytical Res.* 1995;19:1–23. doi: 10.1111/j.1751-908X.1995.tb00147.x

Williams I. S. U-Th-Pb Geochronology by ion microprobe. *Rev. Econ. Geol.* 1998;7:1–35.

Yakymchuk C., Kirkland C. L., Clark C. Th/U ratios in metamorphic zircon. J. Metamorph. Geol. 2018;36: 715–737. doi: 10.1111/jmg.12307

Поступила в редакцию / received: 09.02.2023; принята к публикации / accepted: 28.02.2023. Авторы заявляют об отсутствии конфликта интересов / The authors declare no conflict of interest.

СВЕДЕНИЯ ОБ АВТОРАХ:

Слабунов Александр Иванович

д-р геол.-мин. наук, главный научный сотрудник, руководитель лаборатории геологии и геодинамики докембрия ИГ КарНЦ РАН; профессор кафедры наук о Земле и геотехнологий ПетрГУ

e-mail: slabunov@krc.karelia.ru

Кервинен Анна Валерьевна

младший научный сотрудник лаборатории геологии и геодинамики докембрия

e-mail: kervinen@mail.ru

Нестерова Наталья Сергеевна

канд. геол.-мин. наук, научный сотрудник лаборатории геологии и геодинамики докембрия

e-mail: nesterovan@krc.karelia.ru

Егоров Александр Викторович

младший научный сотрудник лаборатории геологии и геодинамики докембрия

e-mail: av.egorov1@kostomuksha.ru

Максимов Олег Александрович

научный сотрудник лаборатории геологии и геодинамики докембрия

e-mail: olemaximov@mail.ru

Медведев Павел Владимирович

канд. геол.-мин. наук, старший научный сотрудник лаборатории геологии и геодинамики докембрия ИГ КарНЦ РАН; доцент кафедры наук о Земле и геотехнологий ПетрГУ

e-mail: pmedved@krc.karelia.ru

CONTRIBUTORS:

Slabunov, Alexander

Dr. Sci. (Geol.-Miner.), Chief Researcher, Head of Laboratory, Institute of Geology KarRC RAS; Professor, PetrSU

Kervinen, Anna

Junior Researcher

Nesterova, Natalia

Cand. Sci. (Geol.-Miner.), Researcher

Egorov, Alexander

Junior Researcher

Maksimov, Oleg

Researcher

Medvedev, Pavel

Cand. Sci. (Geol.-Miner.), Senior Researcher, Institute of Geology KarRC RAS; Associate Professor, PetrSU

