УДК 553.2. (470.22)

ЗОЛОТО-МЕДНО-СУЛЬФИДНАЯ МИНЕРАЛИЗАЦИЯ КВАРЦ-КАРБОНАТНЫХ ЖИЛ В ГАББРОДОЛЕРИТАХ МЕСТОРОЖДЕНИЯ ЧЕВЖАВАРА (ЮЖНАЯ КАРЕЛИЯ)

Л. В. Кулешевич, О. Б. Лавров

Институт геологии КарНЦ РАН, ФИЦ «Карельский научный центр РАН», Петрозаводск, Россия

Золото-медно-сульфидное оруденение в габбродолеритах (PR, Id) месторождения строительного камня Чевжавара приурочено к кварц-карбонатным жилам, секущим пологозалегающий силл. Оруденение представлено несколькими минеральными типами: магнетит-пиритовым (жилы 1 типа), пирит-борнит-халькопиритовым (жилы 2 типа) и гематит-халькозиновым (жилы 3 типа). Жилы 1 типа крупнокристаллические эпидот-кальцитовые. В краевых частях более крупных сульфиднокварц-карбонатных жил 2 типа развивается скарнирование: образуются зональные гранаты гроссуляр-андрадитового ряда, кальцит, эпидот, реже амфибол и хлорит. Золото содержат медно-сульфидные жилы 2 типа, в них рудная минерализация (продуктивного этапа минералообразования) представлена пиритом, халькопиритом, борнитом, Se-содержащим борнитом, галенитом, клаусталитом, золотом, баритом. Содержание золота в жилах варьирует в пределах 0,06-31 г/т (8 проб). Жилы 3 типа содержат гематит, халькозин, халцедон, кварц, в них иногда встречается рассеянное тонкодисперсное золото. Рудные минералы прорастают хлоритом и стильпномеланом. Локально развиты жилы крупнокристаллического кальцита и амфибол-асбеста. Типоморфными элементами рудной минерализации являются Cu, Au, Co, Se, Zn, Fe (в окисленной форме).

Ключевые слова: золото; сульфиды меди; клаусталит; кварц-карбонатные жилы; гроссуляр-андрадит; скарнирование; габбродолериты; Карелия.

L. V. Kuleshevich, O. B. Lavrov. GOLD-COPPER-SULPHIDE MINERALI-ZATION OF QUARTZ-CARBONATE VEINS IN GABBRO-DOLERITES FROM THE CHEVZHAVARA DEPOSIT, SOUTH KARELIA

Gold-copper-sulphide mineralization in gabbro-dolerites (PR_2Id) from the Chevzhavara building stone deposit is confined to quartz-carbonate veins cutting through a gently dipping sill. Mineralization displays several mineral types: magnetitic-pyritic (type 1 veins), pyritic-bornitic-chalcopyritic (type 2 veins), and hematitic-chalcosine (type 3 veins). Type 1 veins are large-crystalline epidote-calcitic. Skarnification evolves in the margins of larger sulphide-quartz-carbonate veins of type 2: grossular-andradite-series zonal garnets, calcite, epidote, and less often amphibole and chlorite are formed. Gold is present in copper-sulphide type 2 veins. Ore mineralization (in the productive stage of mineral formation) in the veins is represented by pyrite, chalcopyrite, bornite, Se-bornite, galena, clausthalite, gold, and barite. Gold concentration in the veins varies within 0.06–31 g/t (8 samples). Type 3 veins contain hematite, chalcosine, chalcedony, and quartz; scattered, finely dispersed gold is occasionally encountered. Ore minerals are penetrated by chlorite and stilpnomelane. Macrocrystalline calcite and amphibole-asbestos veins are encoun-

16

tered locally. Cu, Au, Co, Se, Zn, and Fe (in oxidized form) are the typomorphic elements of ore mineralization.

Keywords: gold; copper sulphides; clausthalite; quartz-carbonate veins; grossular-andradite; skarnification; gabbro-dolerites; Karelia.

Введение

Месторождение строительного камня Чевжавара разрабатывается ООО «Прионежская горная компания» западнее г. Петрозаводска (Республика Карелия, Россия). Открытая разработка ведется в 3,2 км юго-западнее станции Падозеро в Пряжинском районе (рис. 1). Габбродолериты образуют пологозалегающий силл (PR, Id), внедрившийся в карбонатную толщу туломозерской свиты ятулийского горизонта (рис. 1, б) [Геологическая..., 1971]. Иногда между отдельными пластами силла сохраняются маломощные прослои аргиллитов и карбонатных пород. В юго-западном борту разрабатываемого карьера зафиксированы деформации и встречаются разнообразные жилы мощностью до нескольких метров, секущие силл. Они приурочены к системе трещин ССВ и ЗСЗ простирания. Среди них встречаются как рудные медно-сульфидные, так и безрудные кальцитовые, кварц-карбонатные и тремолитасбестовые жилы. Медно-сульфидные жилы, как показали проведенные исследования, содержат повышенные концентрации золота. Изучение жильных золото-медносульфидных минеральных ассоциаций, впервые выявленных на данном месторождении природного камня, и условий их образования стало основной задачей данной статьи.

Материалы и методы

Каменный материал для исследований был отобран в юго-западной части карьера месторождения природного камня Чевжавара с разрешения руководства горного производства. Он включал образцы горных пород - габбродолеритов, метасоматитов, рудных жил, амфибол-асбестовых прожилков. Координаты точки 810 со скарновыми ассоциациями (рис. 1, б): 61°51'23.1", 33°51'12.6". Минеральный состав рудных и нерудных жил, прожилков и метасоматитов, развивающихся по габбродолеритам, изучался с использованием шлифов, аншлифов, состав минералов - с использованием электронного сканирующего микроскопа VEGA II LSH (Tescan) с энергодисперсионным микроанализатором INCA Energy-350 в аналитическом центре Института геологии КарНЦ РАН (г. Петрозаводск). Пределы обнаружения элементов на микрозондовом анализаторе составляют сотые доли процента. Химическим (силикатным) и рентгенофлуоресцентным спектральным (РФСА) анализами определялся состав габброидов, метасоматитов и содержание основных оксидов в рудных жилах. РФСА проводился на спектрометре ARL ADVANT'X 2331. Микрокомпонентный состав жил и измененных пород определялся методом ICP-MS (9 проб) на квадрупольном масс-спектрометре X-Series 2 путем стандартного разложения проб в кислотах по аккредитованной методике. Золото в богатых рудных жилах подтверждалось пробирным методом (2 анализа) в испытательном аналитическом центре Иргиредмет, Иркутск. Исследуемые образцы (авторов и работников месторождения) переданы в коллекцию Музея геологии докембрия ИГ КарНЦ РАН.

Результаты и обсуждение

Силл габбродолеритов. Габбродолериты, добываемые в карьере Чевжавара, образуют пологозалегающий слабодислоцированный силл в форме блюдца. Это мелкозернистые зеленовато-черные высокопрочные породы, используемые как щебень и строительный материал иного назначения. Минеральный состав пород стандартный: пироксен и развивающийся по нему амфибол, альбитизированный плагиоклаз, титаномагнетит (< 2%); титанит и апатит встречаются в незначительном количестве. Вторичные минералы, связанные с низкотемпературными метаморфическими seленокаменными изменениями, представлены эпидотом, актинолитом, хлоритом, кальцитом, кварцем. Ранние метаморфогенно-гидротермальные ассоциации, встречающиеся в маломощных прожилках, представлены теми же минералами.

Химический состав габбродолеритов представлен в табл. 1/1-3. Во вскрытой части карьера габброиды слабо дифференцированы и характеризуются интервалом содержания SiO₂49,40–45,58 % и Σ (Na₂O+K₂O) 1,90–3,27 %. Для пород характерно несколько повышенное содержание титана, фосфора и малых элементов, таких как Cu, Zn (табл. 1, 2), тогда как в жильных ассоциациях резко возрастают кон-

Рис. 1. Расположение месторождения Чевжавара на обзорной тектонической схеме Фенноскандинавского щита (а) и геологической карте (б) Карелии (м-б 1:200000, лист Р-36-XXII, участок Падозеро):

А – провинции (1 – Карельская, 2 – Беломорская, 3 – Кольская, 4 – Мурманская, 5 – Свекофеннская, 6 – Готская, 7 – Норвежская (каледонский ороген);

Б – геологическая карта: 1 – четвертичные отложения (Q). Палеопротерозойские отложения калевийского (2–3, *kl*), людиковийского (4–5, *ld*) и ятулийского (6, *jt*) горизонтов (PR₁), свиты: 2 – шуйская свита (аркозовые и кварцитопесчаники, аргиллиты, глинистые сланцы, PR₁*sh*), 3 – падосская свита (кварц-серицитовые сланцы, туфоалевролиты, PR₁*pd*), 4 – суйсарская свита (пикрито-базальты, туфы, PR₁*su*), 5 – заонежская свита (шунгитсодержащие породы, базальты, PR₁*zn*), 6 – туломозерская свита (карбонатные породы, PR₁*tl*). Интрузивные образования: 7 – габбродолериты (силл, PR₁*ld*); 8, 9 – гранитоиды, AR₂ (8 – граниты плагиомикроклиновые, 9 – гранито-гнейсы). 10 – положение карьера и место отбора образцов

Fig. 1. The location of the Chevzhavaara deposit (a) on the overview tectonic scheme of the Fennoscandian Shield (a) and the geological map (b) of Karelia (1:200000, sheet P-36-XXII, Padozero section):

A – provinces (1 – Karelian, 2 – Belomorskaya, 3 – Kola, 4 – Murmanskaya, 5 – Svekofennian, 6 – Gotha, 7 – Norwegian (Caledonian orogen).

B – geological map: 1 – Quaternary deposits. Paleoproterozoic sediments of the Kalevian, Ludikovian, Yatulian horizons (PR_1): 2 – Shuyskaya Suite (arcose and quartzite sandstones, mudstones, clay shales, PR_1sh), 3 – Padoskaya Suite (quartz-sericite shales, tufoaleurolites, PR_1pd), 4 – Suysary Suite (picrito-basalts, tuffs, PR_1su), 5 – Zaonezhskaya Suite (shungite – bearing rocks, basalts, PR_1zn), 6 – Tulomozerskaya Suite (carbonate rocks, PR_1tl). Intrusive formations: 7 – gabbrodolerite (sill, PR_1ld); 8, 9 – granitoids, AR_2 (8 – plagiomicrocline granites, 9 – granite-gneiss). 10 – quarry position and sampling location

центрации Cu, Co, S, Au, незначительно повышаются Se и Pb (табл. 2/5–10).

Благодаря открытой разработке карьера в его стенках периодически вскрываются более поздние и крупные по мощности и протяженности тремолит-карбонатные, карбонатные, кварц-карбонатные гидротермальные жилы, секущие габбродолериты. Наиболее крупные кварц-карбонатные жилы сопровождаются медно-сульфидной минерализацией. Жилы имеют мощность от 0,1 до 2 м, длину 5–100 м и ведущие ССВ и ЗСЗ простирания. Количество крупных жил, наблюдаемых в юго-восточной плоскости стенки карьера (на момент прово-

	Jerre gen			,						
Компонент Component (%)	1	2	3	4	5	6	7	8	9	10
SiO ₂	48,14	45,58	49,40	29,6	43,18	44,81	75,28	35,97	3,17	2,79
TiO ₂	2,18	2,83	2,22	0,47	3,13	1,60	0,04	2,05	0,03	0,03
Al ₂ O ₃	12,48	12,04	12,20	15,15	6,80	5,03	2,01	6,85	0,63	0,59
Fe ₂ O _{3, tot.}	3,01	4,86	3,19	3,25	22,57	18,21	6,16	23,27	12,22	42,41
FeO	13,06	14	13,21	7,46						
MnO	0,23	0,24	0,23	0,43	0,33	0,21	0,22	0,24	0,13	0,00
MgO	5,18	4,97	4,87	21,38	2,96	1,84	1,67	1,92	0,00	0,00
CaO	7,98	8,56	8,41	7,61	9,54	13,24	7,82	12,67	43,22	0,89
Na ₂ O	2,24	2,48	1,19	0,02	0,12	0,07	0,00	0,16	0,85	0,00
K ₂ O	0,44	0,79	0,71	0,01	0,98	0,65	0,22	0,75	0,16	0,11
H ₂ O	0,83	0,28	0,48	0,81						
п. п. п., Іоі	3,47	2,7	3,09	13,39	3,67	2,55	2,77	1,80	13,56	14,42
P ₂ O ₅	0,31	0,21	0,30	0,05	0,42	0,25	0,00	0,26	0,00	0,01
SO ₃					1,50	5,82	1,45	5,19	16,26	0,08
CuO					4,46	5,55	2,12	8,65	9,62	38,34
Σ	99,55	99,54	99,50	99,63	99,66	99,83	99,76	99,78	99,85	99,67
№ обр. Sample no.	809/1	809/2	809	809/5	810-4	810–3	810-2a	810-2	810-1	ChS-1

Таблица 1. Состав габбродолеритов, измененных пород и рудных жил *Table 1*. Composition of gabbro-dolerites, altered rocks, and ore veins

Примечание. Анализы: 1–4 – химический, 5–10 – рентгенофлуоресцентный. 1–3 – габбродолериты; 4 – прожилок тремолит-асбестовый; 5–8 – габбродолериты с хлорит-кварц-карбонатными жилами с пирит-халькопирит-борнитовой минерализацией, среди них: 7 – с преобладанием жильного кварца; 9 – скарны с пирит-халькопирит-борнитовой рудной минерализацией; 10 – пирит-борнит-халькопиритовая рудная жила. Пробел – нет данных, п. п. п. – потери при прокаливании.

Note. Analyses: 1-4 - chemical, 5-10 - X-ray fluorescence. 1-3 - gabbro-dolerites; 4 - tremolite-asbestos streak; 5-8 - gabbro-dolerites with chlorite-quartz-carbonate veins and pyrite-chalcopyrite-bornite mineralization, including: 7 - quartz-dominated veins; 9 - skarns with pyrite-chalcopyrite-bornite mineralization; 10 - pyrite-bornite-chalcopyrite ore vein. Gap - no data, π . π . π . - loss on ignition.

Nº No.	№ образца Sample no.	Ti	V	Mn	Ni	Co	Cu	Zn	Se	Au	Pt+Pd	Ag	Pb
1	809	11000	446	1596	51	6,2	392	157		0,2	0,18		3,8
2	809/1	13320	479	1703	60	53,8	537	162		0,2	0,15	0,1	3,2
3	809/2	16660	1098	1736	64	65,1	371	148		0,1	0,12		2,1
4	809/5	2688	18	3205	30	27,8	158	469		0,4	0,32		15,7
5	809/7	3455	28	690	44	4,1	212	210	1,7	0,2	0,22		10,7
6	809/9	818	47	2978	13	10,7	223	161	0,6	0,06	0,16		40,2
7	809/9п	814	47	3011	14	10,4	221	164	0,2	0,1	0,18		39,2
8	810/1	42	9	771	61	176	49540	108	50,1	0,1	0,014	1,1	43,7
9	Че – 1	16	4	19	58	180	222900	418	147,6	1,06	0,26	3	82,6

Таблица 2. Содержание элементов в породах, жилах и рудах (г/т, ICP-MS анализ)

Table 2. Element concentrations in rocks, veins and ores (g/t, ICP-MS analysis)

Примечание. 1–3 – габбродолериты. 4–9 – жилы: 4 – кальцит-тремолит-асбестовый прожилок; 5–7 – кварцевые и карбонат-кварцевые жилы в габбродолеритах; 8 – скарны с пирит-халькопирит-борнитовой рудной минерализацией; 9 – пиритборнит-халькопиритовая рудная жила. ICP-MS анализ, пробел – нет данных.

Note. 1–3 – gabbro-dolerites. 4–9 – veins: 4 – calcite-tremolite-asbestos streak; 5–7 – quartz and carbonate-quartz veins; 8 – skarns with pyrite-chalcopyrite-bornite mineralization; 9 – pyrite-bornite-chalcopyrite ore vein. ICP-MS analysis, gap – no data.

димых работ), составляло 2–4. Околожильные изменения большинства небольших по мощности жил и зон трещиноватости представлены крупнокристаллическими эпидотом, тремолитом, хлоритом и кальцитом. На контакте более крупных кварц-карбонатных жил, содержащих сульфиды, развита скарновая ассоциация, представленная кальцитом, гранатом, эпидотом.

Минеральные ассоциации жил, секущих габбродолериты. Среди гидротермальных сульфидсодержащих карбонатных и кварц-карбонатных жил, секущих габбродолериты, авторами были выделены рудные (содержащие

Рис. 2. Сульфидные жилы участка Чевжавара:

а – пирит в эпидот-кальцитовой жиле 1 типа; б – эпидот и гранат на контакте кальцитовой жилы; в – гранат-кальцитовый скарн (зальбанды жил 2 типа); г – халькопирит-борнитовая руда (сульфид-кальцит-кварцевые жилы 2 типа); д – гематитхалькозиновая руда (жилы 3 типа)

Fig. 2. Sulphide veins at the Chevzhavara area:

a – pyrite in an epidote-calcite vein of type 1; b – epidote and garnet at the contact calcite vein; c – garnet-calcite skarn (selvages of veins of type 2); d – chalcopyrite-bornite ore (large veins of type 2); e – hematite-chalcosine ore (veins of type 3)

пирит, сульфиды меди либо гематит) и безрудные. Ниже рассмотрим более подробно состав трех типов жил.

Жилы 1 типа (рис. 2, а) содержат крупнокристаллический пирит и реже магнетит. Нерудная ассоциация таких жил представлена кальцитом и желто-зеленым игольчатым эпидотом. В зальбандах жил по раздробленным и измененным габбродолеритам развиваются мелкозернистые эпидот, кальцит и хлорит, реже встречается гранат (рис. 2, б). Жилы содержат кристаллы хорошо ограненного кубического пирита, размером достигающие 1-3,5 см. Подобный крупнокристаллический пирит обычно образуется в центральной части эпидот-кальцитовых жил на контакте с белым крупнокристаллическим кальцитом. В зальбандах жил на границе с вмещающей породой иногда выделяется магнетит и встречается хлорит. Кристаллы магнетита (беститанистого) достигают размера 2-4 мм.

Жилы 2 типа представлены халькопиритом, борнитом, пиритом, кальцитом, кварцем, реже содержат эпидот (являются медносульфидными). В краевых частях таких наиболее крупных медносульфидно-кварц-карбонатных жил развивается скарнирование (рис. 2, в, г).

Минеральная ассоциация скарнов представлена кальцитом, гранатом, эпидотом, реже встречается доломит. Гранат гроссуляр-андрадитового ряда, зональный, светло-оранжевого, желто-оранжевого цвета, образует хорошо ограненные зерна (рис. 3, а, б, д) и их срастания, а также скелетные выделения (рис. 3, в). Скелетные кристаллы содержат многочисленные включения (рис. 3, в). Нерудные минералы выступают как «затравки» при росте гранатов.

В скарновых существенно кальцитовых ассоциациях более мелкий гранат (0,1–1 мм) в центре представлен железистым гроссулярандрадитом (рис. 3, а), в кайме – существенно алюминиевым (андрадит-гроссуляр, рис. 3, б).

Рис. 3. Ассоциация жильных скарнов: а, б – зональные гранаты (а – железистый, светлый в центре, б – глиноземистый, темный в центре); в – скелетный кристалл граната с включениями кальцита, кварца, эпидота и сульфидов; г – метакристаллы пирита (белый) с включениями граната

Fig. 3. Veined skarn association: a, 6 - zonal garnets (a - ferrous, light in the center, b - aluminous, dark in the center); B - skeleton garnet with calcite, quartz, epidote, and sulphide inclusions; <math>r - pyrite metacrystals (white) with garnet inclusions

Компонент	1	2	3	4	5	6	7	8	9	10	11	12	13
Component (%)													
Al ₂ O ₃	3,19		9,71	10,58	9,00	18,78	16,34	18,45	20,50	5,48	10,99		
SiO ₂	38,92	38,05	39,41	40,05	40,09	40,90	40,49	41,39	41,40	39,26	40,89	38,02	38,30
CaO	37,66	33,90	35,17	35,40	34,93	36,12	35,88	36,05	35,88	34,44	34,47	44,48	34,67
FeO	23,22	28,05	15,71	13,97	15,98	4,20	7,30	4,10	1,55	20,82	13,65	27,89	27,03
MnO									0,68				
Σ	100	100	100	100	100	100	100	100	100	100	100	100	100

Таблица 3. Состав граната из скарновых ассоциаций Table 3. Composition of garnet from skarn associations

Примечание. 1–7 – зональный Fe-Al-гранат: 1–5 – центр кристаллов (андрадит, иногда со слабо проявленной зональностью); 6, 7 – край кристалла (гроссуляр). 8–13 – зональный Al-Fe-гранат: 8–11 – зональные ядра кристалла (8, 9 – гроссуляр; 10, 11 – андрадит-гроссуляр); 12, 13 – край кристалла (андрадит). Анализы при приборном пересчете приведены к 100 %. *Note.* 1–7 – zone Fe-Al-garnet: 1–5 – crystal centre (andradite), 6, 7 – crystal margin (grossular). 8–13 – zone Al-Fe-garnet: 8–11 – zone crystal centre (8, 9 – grossular; 10, 11 – andradite-grossular), 12, 13 – crystal margin (andradite).

На рис. 4 (а) высокие концентрации элементов выделяются более ярким цветом и светлым тоном. По составу (табл. 3) он обычно имеет простую зональность (ядро-кайма), отличающуюся соотношением Fe и Al и постоянством содержания Si, Ca.

Более крупный гранат (0,5–3 мм) чаще развит вблизи зонок с кварцем и непосредственно вблизи сульфидно-кварцевых жил и прожилков. Он также имеет желтовато-оранжевый цвет, но отличается наличием многочисленных каем, меняющихся по составу. В этих гранатах ядро чаще бывает более темное (глиноземистое), обычно с тонкой зональностью, представленной чередующимися каймами. В ядрах кристаллов развит более алюминиевый гроссуляр, в каймах – железистый андрадит (рис. 4, б; табл. 3). Подобная ростовая (осцилляторная, «колеблющаяся») зональность связана с пульсационным изменением состава растворов, вызывающих метасоматические изменения.

Рудная вкрапленность в скарновых ассоциациях представлена мелкими кубическими кристаллами пирита (5–20 %). Реже с ним встречаются более поздние наложенные тонкозернистые выделения халькопирита, борнита, сфалерита, галенита, обычно сопровождающие тонкие прожилки кварца. Метакристаллы пирита содержат включения граната и кальцита, что свидетельствует о более поздней кристаллизации сульфидов относительно граната. К самым поздним образованиям относятся крупные секущие гнездовые обособления барита.

Рудная ассоциация сульфидно-кварц-карбонатных жил (рис. 2, г, рис. 5), секущих скарны, представлена преимущественно халькопиритом, пиритом, борнитом. Крупные кристаллы пирита в этой ассоциации редкие (рис. 5, а). Пирит выделяется первым, цементируется халькопиритом, содержит повышенные концентрации Со.

Медные сульфиды представлены халькопиритом и борнитом (рис. 5). Халькопирит (CuFeS₂) с краев и по микротрещинкам замещается борнитом-1 (Cu₅FeS₄) (рис. 5, а). Борнит образует два типа зерен (генерация

Рис. 4. Гранат: поэлементное картирование (а – в кальците, б – на контакте с кальцит-кварцевой жилой; INCA Energy-350)

Fig. 4. Garnet: map of elements (a – at calcite, 6 – at calcite-quartz veins; INCA Energy-350)

1 - более темные по тону зерна беспримесного борнита и 2 – светлые селенсодержащие, рис. 5, б). В крупных зернах борнита-1 по кристаллографическим направлениям наблюдается выделение пластинчатых включений халькопирита (рис. 5, в-г). Это свидетельствует о метастабильном состоянии борнита, избытке железа в его составе и его распаде с выделением пластинок халькопирита. Такой распад обычно происходит при снижении температуры от 300 до 170 °С (Т устойчивости). По борниту незначительно развивается халькозин. Светлый борнит-2 представлен селенсодержащей разновидностью (рис. 5, д-ж). Растворимость селена в нем достигает 4-6 % (определение содержания элементов проводилось по площадке spectrum 4, рис. 5, е). Невысокое содержание селена не позволило достичь состава так называемого устойчивого эскеборнита (CuFeSe₂). Дальнейший привнос растворами свинца сопровождался тем, что избыток селена в борните начал связываться и выпадать в форме мельчайших включений фазы клаусталита в светлом борните-2. По сути, сейчас мы наблюдаем распад эвтектики Си-Fe-Se-S – Pb-Se-S с образованием мельчайших червеобразных и каплевидных выделений клаусталита (рис. 5, д-ж) и более крупных самостоятельных зерен клаусталита (рис. 5, б, д, з - белые зерна) в борните. В Карелии эскеборнит в подобной ассоциации с клаусталитом, халькопиритом и борнитом был определен лишь на одном палеопротерозойском месторождении Средняя Падма.

Сульфиды секутся железистым хлоритом (MgO 8,05–9,53 %, AI_2O_3 19,72–20,44 %, SiO_225,49–28,44 %, FeO 32,18–35,19 %) и стилыпномеланом (MgO 3,89–4,58 %, AI_2O_3 5,43–6,05 %, SiO_45,65–47,37 %, K₂O 2,34–3,64 %, FeO 28,52–30,84 %).

Галенит встречается в небольшом количестве (рис. 5, а, белые включения в пирите), концентрация Pb в рудных прожилках также низкая (табл. 2). Галенит начинает выделяться сначала в ассоциации с сульфидами, затем с селенидами (клаусталитом). В галените, образующем мелкие зерна в пирите и скарновых ассоциациях, селен обычно не встречается или его концентрации очень низкие. В ассоциации с более крупными обособленными зернами клаусталита галенит содержит до 2,6-8,0 % Ѕе и относится к селенсодержащему. С ним в ассоциации встречается маложелезистый светло-коричневый сфалерит (Fe до 2,60-4,93%). Более темно-коричневый (железистый) сфалерит иногда образует и самостоятельные маломощные прожилки.

Содержание рудогенных элементов в пирит-борнит-халькопиритовых жилах составляет: Cu 5–31 % (табл. 1, 2); в г/т: Ni 60, Co 180, Zn 108–418, Se 50–148, Pb 44–83, Ag 1–3, Au 0,06–1,06 (табл. 2). По данным пробирного анализа штуфных проб (n=2), выполненного в AO «Иргиредмет», для наиболее богатых рудных жил установлено содержание Au 8–31 г/т.

Рис. 5. Халькопирит, борнит и селениды в пирит-борнит-халькопиритовых рудах:

а – халькопирит замещается борнитом (слева), пирит содержит включения галенита (белые точки в темно-сером минерале справа); б – борнит-1 с пластинками халькопирита (справа), борнит-2 с белыми включениями клаусталита (слева); в, г – распад борнита-1 (1) с выделением пластинок халькопирита (2); д, е – борнит-2 с включениями ламелей и зерен клаусталита (е – определение состава по площадке spectrum 4); ж – зерно борнита-2 (2) с многочисленными включениями клаусталита (1, 3, белый); з – прорастание борнита (6) с включениями клаусталита (1) хлоритом и стильпномеланом (2–4). *Fig. 5.* Chalcopyrite, bornite, and selenides in pyrite-bornite-chalcopyrite ores:

a – chalcopyrite is replaced by bornite (left), pyrite contains galena inclusions (white dots in a dark-grey mineral to the right); 6 - bornite-1 with chalcopyrite lamellae (right), bornite-2 with white clausthalite inclusions (left); B, r - decay of bornite-1 (1) with separation of chalcopyrite lamellae (2); A, e - bornite-2 with lamella and clausthalite grain inclusions (e – analysis of composition based on the site chosen, spectrum 4); $\pi - grain of bornite-2$ (2) with abundant clausthalite inclusions (1, 3, white); 3 - penetration of bornite (6) with clausthalite inclusions (1) by chlorite and stilpnomelane (2–4).

Золото образует тончайшие просечки в пирите толщиной < 1–2 мкм и зерна неправильной формы 3–50 мкм (рис. 6). Состав золота (Au 83,53–44,73 %) по содержанию серебра меняется от серебристого золота (Ag 16,47–27,08 %) до электрума (Ag от 30,0–34,81 до 47,12 %).

Жилы 3 типа представлены халькозином в ассоциации с халцедоном, гематитом и гетитом (рис. 2, д, рис. 7). Эти жилы и гнезда образуются на более поздней низкотемпературной стадии после борнита. Их мощность достигает 5–50 см. Своеобразное секреционное зарастание неоднородных гнездово-жильных полостей (рис. 7, а) происходит от краевой части к центру с чередованием зон: сначала образуется тонкодисперсный серый халцедон, проросший гематитом, затем гематит и в центре халькозин. По «трещинкам усыхания», возникающим после раскристаллизации в полостях, вновь образуется тонкозернистый кварц, секущий эти неправильные секреционные зарастания, и игольчатый гетит. Морфологически все эти образования выглядят в виде очень необычных по форме секреций и «трубочек» (рис. 7, б). При отношении меди и серы в халькозине как 66 : 36 (дигенит) – 62,6 : 37,4 (анилит) – 65,84 : 34,16 (джарлеит), синеватому оттенку и средним составам его можно отнести к дигениту Cu_{1,8}S, с верхней температурой устойчивости ~ 83 °C [Справочник-определитель..., 1988].

В этих богатых гематит-халькозиновых прожилково-гнездовых и жильных рудах иногда (редко) встречаются тонкодисперсные селениды и гораздо реже – тонкодисперсное золото (единичное зерно, определенное при микрозондовом исследовании). Поздний игольчатый гетит сечет халькозин (рис. 7, в).

Широко развитые безрудные (безсульфидные) жилы представлены крупнокристал-

Рис. 6. Форма выделения золота в пирите из медно-сульфидных прожилков проявления Чевжавара: 1 – золото, 2 – пирит

Fig. 6. Form of gold separation in pyrite from copper-sulphide streaks at the Chavzhavara ore occurrence: 1 – gold, 2 – pyrite

Рис. 7. Гематит-халькозиновые жилы: а – халькозин (белый), гематит (серый), черное – «трещинки усыхания» кварц, халцедон; б – гематит (серые трубочки), халцедон (черное между ними); в – прорастание халькозина (светлый) гетитом (темно-серые пластинки) *Fig. 7.* Hematite-chalcosine veins: a – chalcosine (white), hematite (grey), black – quartz, chalcosine (desiccation cracks'): б – bematite (small grey pipes), chalcedony (black colour between

cedony ('desiccation cracks'); δ – hematite (small grey pipes), chalcedony (black colour between them); B – penetration of chalcosine (light) by goethite (dark-grey lamellae)

лическим кальцитом, кальцитом в срастании с амфибол-асбестом либо исключительно амфибол-асбестом. Определение состава минералов этих жил позволило установить, что волокнисто-игольчатый амфибол бело-серого цвета представлен тремолитом (см. табл. 1/4), а крупнокристаллический белый карбонат представлен чистым (без примесей) кальцитом. Тремолит-асбестовые жилы легко дезинтегрируются в открытых стенках карьера и рассыпаются.

Выводы

Золотосодержащие медно-сульфидные жилы прослеживаются во всех палеопротерозойских структурах Карелии, иногда образуя небольшие месторождения или проявления меди и золота, такие как Воицкое, Шуезерское, Ондозерское, Муезерское, Кеч, Кончезерская группа и другие [Кулешевич и др., 2009, 2010]. Палеопротерозойский (людиковийский) силл габбродолеритов Чевжавара сечет ятулийские карбонатные толщи (туломозерской свиты). Он образует пологозалегающее слегка деформированное тело и сечется серией жил. Среди рудных кальцитовых и кварц-кальцитовых в них преобладают пирит-борнитхалькопиритовые, среди более поздних – халцедон-гематит-халькозиновые жилы, среди безрудных – кальцит-тремолит-асбестовые.

Крупные медносульфидно-кварц-кальцитовые жилы сопровождаются жильными инфильтрационными гранат-кальцитовыми скарнами, в которых гранат представлен зональным андрадит-гроссуляровым типом. Наличие гранаткальцитовых жильных скарнов, магнетит-пиритовых, пирит-борнит-халькопиритовых, гематит-халькозиновых рудных ассоциаций, распад селенсодержащего борнита, соотношение Cu:S в халькозине позволяют говорить о достаточно широком температурном интервале образования жил: от условий скарнирования (для гранатов гроссуляр-андрадитового состава от T ~ 500–550 °C) до ~ 83–70 °C.

На проявлении Чевжавара золото приурочено к пирит-борнит-халькопиритовым (медносульфидным) жилам, содержащим в небольшом количестве клаусталит, галенит (в том числе содержащий 3–8 % Se). Золото «садится» в пирит: оно тяготеет к микротрещинкам в пирите и относится к серебристому золоту и электруму. Концентрация золота в рудных

References

Geologicheskaya karta m-ba 1:200000. Nomenklatura P-36-XXII [Geological map, 1: 200,000. Nomenclature P-36-XXII]. St. Petersburg: VSEGEI, 1971.

Kuleshevich L. V., Golubev A. I., Lavrov O. B. Paleoproterozoiskie zolotosoderzhashchie mednye mestorozhdeniya i proyavleniya Karel'skogo kratona [Paleoproterozoic auriferous copper deposits and occurrences in the Karelian Craton]. *DAN* [Dokl. RAS]. 2010. Vol. 432, no. 3. P. 376–380.

Kuleshevich L. V., Lavrov O. B., Golubev A. I. Zolotosoderzhashchee mednosul'fidnoe mestorozhdenie

СВЕДЕНИЯ ОБ АВТОРАХ:

Кулешевич Людмила Владимировна

ведущий научный сотрудник к. г.-м. н. Институт геологии КарНЦ РАН, Федеральный исследовательский центр «Карельский научный центр РАН» ул. Пушкинская, 11, Петрозаводск, Республика Карелия, Россия, 185910 эл. почта: kuleshev@krc.karelia.ru жилах составляет 0,06–31 г/т. Однако их количество на вскрытой (близповерхностной) площади карьера ограничено, жилы и рудные гнезда в них разрознены. Месторождение габбродолеритов – частный горнорудный объект, быстро отрабатываемый. Обнаружение на нем медносульфидных золотосодержащих жил имеет пока минералогический интерес, требующий внимания и дальнейших исследований.

Работа выполнена в рамках госзадания КарНЦ РАН, тема НИР № АААА-А18-118020290084-7.

Литература

Геологическая карта м-ба 1:200000. Номенклатура Р-36-XXII. СПб.: ВСЕГЕИ, 1971.

Кулешевич Л. В., Голубев А. И., Лавров О. Б. Палеопротерозойские золотосодержащие медные месторождения и проявления Карельского кратона // ДАН. 2010. Т. 432, № 3. С. 376–380.

Кулешевич Л. В., Лавров О. Б., Голубев А. И. Золотосодержащее медносульфидное месторождение Воронов Бор и перспективы медносульфидных проявлений Карелии // Геология и полезные ископаемые Карелии. Вып. 9. Петрозаводск: КарНЦ РАН, 2009. С. 26–47.

Справочник-определитель рудных минералов в отраженном свете. М.: Недра, 1988. 504 с.

Поступила в редакцию 20.06.2020

Voronov Bor i perspektivy mednosul'fidnykh proyavlenii Karelii [Voronov Bor auriferous copper sulphide deposit and the prospects of copper sulphide occurrences in Karelia]. *Geol. i poleznye iskopaemye Karelii* [Geol. and Useful Minerals of Karelia]. 2009. Iss. 9. P. 26–47.

Spravochnik-opredelitel' rudnykh mineralov v otrazhennom svete [An identification guide to ore minerals in reflected light]. Moscow: Nedra, 1988. 504 p.

Received June 20, 2020

CONTRIBUTORS:

Kuleshevich, Lyudmila

Institute of Geology, Karelian Research Centre, Russian Academy of Sciences 11 Pushkinskaya St, 185910 Petrozavodsk, Karelia, Russia e-mail: kuleshev@krc.karelia.ru

Лавров Олег Борисович

научный сотрудник, руководитель Музея геологии докембрия Институт геологии КарНЦ РАН, Федеральный исследовательский центр «Карельский научный центр РАН» ул. Пушкинская, 11, Петрозаводск, Республика Карелия, Россия, 185910 эл. почта: petrlavrov@list.ru

Lavrov, Oleg Institute of Geology, Karelian Research Centre, Russian Academy of Sciences 11 Pushkinskaya St, 185910 Petrozavodsk, Karelia, Russia e-mail: petrlavrov@list.ru