ОБРАТНАЯ ЗАДАЧА ИДЕНТИФИКАЦИИ СПЕКТРОВ ТЕРМОДЕСОРБЦИИ ВОДОРОДА

Юрий Васильевич Заика, Екатерина Константиновна Костикова, Yury Zaika, Ekaterina Kostikova

Аннотация


В рамках технологических задач водородного материаловедения (включая проект ITER) ведется интенсивный поиск различных по назначению конструкционных материалов с заданными пределами водородопроницаемости. Одним из экспериментальных методов является термодесорбционная спектрометрия (ТДС). Образец, насыщенный водородом, дегазируется в условиях вакуумирования и монотонного нагрева. С помощью масс-спектрометра регистрируется десорбционный поток, позволяющий судить о характере взаимодействия изотопов водорода с твердым телом. В статье представлены распределенная краевая задача термодесорбции с динамическими граничными условиями и численный метод моделирования ТДС-спектра, требующий лишь интегрирования нелинейной системы обыкновенных дифференциальных уравнений (ОДУ) невысокого порядка (по сравнению, например, с методом прямых). Предложен метод оценки коэффициентов растворения и десорбции в условиях реального динамического взаимодействия поверхностных и диффузионных процессов, без искусственного разделения исследований на режимы лимитирования диффузией (DLR) и поверхностных реакций (SLR).

Ключевые слова


водородопроницаемость; поверхностные процессы; термодесорбция; динамические граничные условия; параметрическая идентификация; численное моделирование

Полный текст:

PDF

Литература


Взаимодействие водорода с металлами / Ред. А.П. Захаров. М.: Наука, 1987. 296 с.

Водород в металлах / Ред. Г. Алефельд и И. Фёлькль. М.: Мир, 1981. Т.1,506c. Т.2,430с.

Изотопы водорода. Фундаментальные и прикладные исследования / Ред. А.А. Юхимчук. Саров: РФЯЦ-ВНИИЭФ, 2009. 697c.

Писарев А.А., Цветков И.В., Маренков Е.Д., Ярко С.С. Проницаемость водорода через металлы. М.: МИФИ, 2008. 144 с.

Andronov D.Yu., Arseniev D.G., Polyanskiy A.M., Polyanskiy V.A., Yakovlev Yu.A. Application of multichannel diffusion model to analysis of hydrogen measurements in solid// Int. J. Hydrogen Energy. 2017. Vol. 42. P. 699–710.

doi:10.1016/j.ijhydene.2016.10.126.

Belyaev A.K., Polyanskiy A.M., Polyanskiy V.A., Sommitsch Ch., Yakovlev Yu.A. Multichannel diffusion vs TDS model on

example of energy spectra of bound hydrogen in 34CrNiMo6 steel after a typical heat treatment// Int. J. Hydrogen Energy. 2016. Vol. 41. P. 8627–8634. doi:10.1016/j.ijhydene.2016.03.198.

Castro F.J., Meyer G. Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization (I): theoretical aspects// J. Alloys and Compd. 2002. Vol. 330–332. P. 59–63.

Denisov E.A., Kompaniets M.V., Kompaniets T.N., Bobkova I.S. Peculiarities of hydrogen permeation through Zr–1%Nb alloy and evaluation of terminal solid solubility// J. Nucl. Mater. 2016. Vol. 472. P. 13–19. doi:10.1016/j.jnucmat.2016.01.022.

Evard E.A., Gabis I.E., Yartys V.A. Kinetics of hydrogen evolution from MgH2: experimental studies, mechanism and modelling// Int. J. Hydrogen Energy. 2010. Vol. 35. P. 9060–9069. doi:10.1016/j.ijhydene.2010.05.092.

Hale J. Theory of Functional Differential Equations. Springer-Verlag, 1977. 366p.

Handbook of hydrogen storage: new materials for future energy storage. Ed. M. Hirscher. Wiley-VCH, 2010. 353p.

Indeitsev D.A., Semenov B.N. About a model of structure-phase transfomations under hydrogen influence// Acta Mechanica. 2008. Vol. 195.

P. 295–304. doi:10.1007/s00707-007-0568-z.

Legrand E., Oudriss A., Savall C., Bouhattate J., Feaugas X. Towards a better understanding of hydrogen measurements obtained by thermal desorption spectroscopy using FEM modeling// Int. J. Hydrogen Energy. 2015. Vol. 40. P. 2871–2881. doi:doi.org/10.1016/j.ijhydene.2014.12.069.

Lang S. Elliptic functions. Addison-Wesley publishing, 1973. 326p.

Lototskyy M.V., Yartys V.A., Pollet B.G., Bowman Jr.R.C. Metal hydride hydrogen compressors: a review// Int. J. Hydrogen Energy. 2014. Vol. 39. P. 5818–5851. doi:10.1016/j.ijhydene.2014.01.158.

McRae G.A., Coleman C.E., Leitch B.W. The first step for delayed hydride cracking in zirconium alloys// J. Nucl. Mater. 2010. Vol. 396. P. 130–133. doi:10.1016/j.jnucmat.2009.08.019.

Mieza J.I., Vigna G.L., Domizzi G. Evaluation of variables affecting crack propagation by delayed hydride cracking in Zr–2.5Nb with different heat treatments// J. Nucl. Mater. 2011. Vol. 411. P. 150–159. doi:10.1016/j.jnucmat.2011.01.101.

Oya Y., Inagaki Y., Suzuki S., et all. Behavior of hydrogen isotope retention in carbon implanted tungsten// J. Nucl. Mater. 2009. Vol. 390-–391.

P. 622–625. doi:10.1016/j.jnucmat.2009.01.175.

Rodchenkova N.I., Zaika Yu.V. Numerical modelling of hydrogen desorption from cylindrical surface// Int. J. Hydrogen Energy. 2011. Vol. 36. P. 1239–1247. doi:10.1016/j.ijhydene.2010.06.121.

Samsonov A.V., Korenkov A.Yu., Gabis I.E., Kurdyumov A.A. Limiting role of desorption in hydrogen transport across a deposited beryllium film// Tech Phys. The Russian J. Appl. Phys. 1998. Vol. 43, no. 1. P. 114–116.

Schmid K., Rieger V., Manhard A. Comparison of hydrogen retention in W and W/Ta alloys// J. Nucl. Mater. 2012. Vol. 426. P. 247–

doi:10.1016/j.jnucmat.2012.04.003.

Tazhibaeva I.L., Shestakov V.P., Klepikov A.Kh., Romanenko O.G., Chikhray Y.V., Kenzhin E.A., Zverev V.V. Modeling of Hydrogen

release from irradiated beryllium// National Nucl. Center of the Republic of Kazakhstan Bull. 2000. Vol. 1. P. 37–41.

The hydrogen economy. Eds. M. Ball, M. Wietschel. Cambridge Univ. Press, 2009. 646p.

Varin R.A., Czujko T., Wronski Z.S. Nanomaterials for solid state hydrogen storage. NY: Springer, 2009. 338p.

Whittaker E.T., Watson G.N. A Course of Modern Analysis. Cambridge University Press, 1996. 612p.

Zaika Yu.V., Bormatova E.P. Parametric identification of hydrogen permeability model by delay times and conjugate equations// Int. J.

Hydrogen Energy. 2011. Vol. 36. P. 1295–1305. doi:10.1016/j.ijhydene.2010.07.099.

Zaika Yu.V., Kostikova E.K. Computer simulation of hydrogen thermal desorption by ODE-approximation// Int. J. Hydrogen Energy. 2017. Vol. 42. P. 405–415.

doi:10.1016/j.ijhydene.2016.10.104.

Zaika Yu.V., Kostikova E.K. Computer simulation of hydrogen thermodesorption// Adv. in Mater. Sci. and Appl. 2014. Vol. 3. Iss. 3. P. 120–129. doi:10.5963/AMSA0303003.

Zaika Yu.V., Kostikova E.K. Determination of effective recombination coefficient by thermodesorption method// Int. J. Hydrogen Energy. 2014. Vol. 39. P. 15818–15826. doi:10.1016/j.ijhydene.2014.07.117.

Zaika Yu.V., Rodchenkova N.I. Boundary-value problem with moving bounds and dynamic boundary conditions: diffusion peak of TDS-spectrum of dehydriding// Appl. Math. Model. 2009. Vol. 33. Iss. 10. P. 3776–3791. doi:10.1016/j.apm.2008.12.018.

Zaika Yu.V. The solvability of the equations for a model of gas transfer through membranes with dynamic boundary conditions// Comp. Maths. Math. Phys. 1996. Vol. 36. Iss. 12. P. 1731–1741.

REFERENCES in ENGLISH

Vzaimodeistvie vodoroda s metallami [Interaction of hydrogen with metals] Ed. A.P. Zakharov. Moscow: Nauka, 1987. 296 p.

Hydrogen in metals. Eds. G. Alefeld, J. Völkl. Berlin: Springer-Verlag, 1978.

Izotopy vodoroda. Fundamental’nye i prikladnye issledovaniya [Hydrogen isotopes. Fundamental and applied studies]. Ed. A.A.,Yuk-

himchuk. Sarov: RFYaTs-VNIIEF, 2009. 697p.

Pisarev A.A., Tsvetkov I.V., Marenkov E.D., Yarko S.S. Pronitsaemost’ vodoroda cherez metally [Hydrogen permeability through metals].

Moscow: MIFI, 2008. 144 p.

Andronov D.Yu., Arseniev D.G., Polyanskiy A.M., Polyanskiy V.A., Yakovlev Yu.A. Application of multichannel diffusion model to analysis of hydrogen measurements in solid// Int. J. Hydrogen Energy. 2017. Vol. 42. P. 699–710.

doi:10.1016/j.ijhydene.2016.10.126.

Belyaev A.K., Polyanskiy A.M., Polyanskiy V.A., Sommitsch Ch., Yakovlev Yu.A. Multichannel diffusion vs TDS model on

example of energy spectra of bound hydrogen in 34CrNiMo6 steel after a typical heat treatment// Int. J. Hydrogen Energy. 2016. Vol. 41. P. 8627–8634. doi:10.1016/j.ijhydene.2016.03.198.

Castro F.J., Meyer G. Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization (I): theoretical aspects// J. Alloys and Compd. 2002. Vol. 330–332. P. 59–63.

Denisov E.A., Kompaniets M.V., Kompaniets T.N., Bobkova I.S. Peculiarities of hydrogen permeation through Zr–1%Nb alloy and evaluation of terminal solid solubility// J. Nucl. Mater. 2016. Vol. 472. P. 13–19. doi:10.1016/j.jnucmat.2016.01.022.

Evard E.A., Gabis I.E., Yartys V.A. Kinetics of hydrogen evolution from MgH2: experimental studies, mechanism and modelling// Int. J. Hydrogen Energy. 2010. Vol. 35. P. 9060–9069. doi:10.1016/j.ijhydene.2010.05.092.

Hale J. Theory of Functional Differential Equations. Springer-Verlag, 1977. 366p.

Handbook of hydrogen storage: new materials for future energy storage. Ed. M. Hirscher. Wiley-VCH, 2010. 353p.

Indeitsev D.A., Semenov B.N. About a model of structure-phase transfomations under hydrogen influence// Acta Mechanica. 2008. Vol. 195.

P. 295–304. doi:10.1007/s00707-007-0568-z.

Legrand E., Oudriss A., Savall C., Bouhattate J., Feaugas X. Towards a better understanding of hydrogen measurements obtained by thermal desorption spectroscopy using FEM modeling// Int. J. Hydrogen Energy. 2015. Vol. 40. P. 2871–2881. doi:doi.org/10.1016/j.ijhydene.2014.12.069.

Lang S. Elliptic functions. Addison-Wesley publishing, 1973. 326p.

Lototskyy M.V., Yartys V.A., Pollet B.G., Bowman Jr.R.C. Metal hydride hydrogen compressors: a review// Int. J. Hydrogen Energy. 2014. Vol. 39. P. 5818–5851. doi:10.1016/j.ijhydene.2014.01.158.

McRae G.A., Coleman C.E., Leitch B.W. The first step for delayed hydride cracking in zirconium alloys// J. Nucl. Mater. 2010. Vol. 396. P. 130–133. doi:10.1016/j.jnucmat.2009.08.019.

Mieza J.I., Vigna G.L., Domizzi G. Evaluation of variables affecting crack propagation by delayed hydride cracking in Zr–2.5Nb with different heat treatments// J. Nucl. Mater. 2011. Vol. 411. P. 150–159. doi:10.1016/j.jnucmat.2011.01.101.

Oya Y., Inagaki Y., Suzuki S., et all. Behavior of hydrogen isotope retention in carbon implanted tungsten// J. Nucl. Mater. 2009. Vol. 390-–391. P. 622–625. doi:10.1016/j.jnucmat.2009.01.175.

Rodchenkova N.I., Zaika Yu.V. Numerical modelling of hydrogen desorption from cylindrical surface// Int. J. Hydrogen Energy. 2011. Vol. 36. P. 1239–1247. doi:10.1016/j.ijhydene.2010.06.121.

Samsonov A.V., Korenkov A.Yu., Gabis I.E., Kurdyumov A.A. Limiting role of desorption in hydrogen transport across a deposited beryllium film// Tech Phys. The Russian J. Appl. Phys. 1998. Vol. 43, no. 1. P. 114–116.

Schmid K., Rieger V., Manhard A. Comparison of hydrogen retention in W and W/Ta alloys// J. Nucl. Mater. 2012. Vol. 426. P. 247–

doi:10.1016/j.jnucmat.2012.04.003.

Tazhibaeva I.L., Shestakov V.P., Klepikov A.Kh., Romanenko O.G., Chikhray Y.V., Kenzhin E.A., Zverev V.V. Modeling of Hydrogen

release from irradiated beryllium// National Nucl. Center of the Republic of Kazakhstan Bull. 2000. Vol. 1. P. 37–41.

The hydrogen economy. Eds. M. Ball, M. Wietschel. Cambridge Univ. Press, 2009. 646p.

Varin R.A., Czujko T., Wronski Z.S. Nanomaterials for solid state hydrogen storage. NY: Springer, 2009. 338p.

Whittaker E.T., Watson G.N. A Course of Modern Analysis. Cambridge University Press, 1996. 612p.

Zaika Yu.V., Bormatova E.P. Parametric identification of hydrogen permeability model by delay times and conjugate equations// Int. J.

Hydrogen Energy. 2011. Vol. 36. P. 1295–1305. doi:10.1016/j.ijhydene.2010.07.099.

Zaika Yu.V., Kostikova E.K. Computer simulation of hydrogen thermal desorption by ODE-approximation// Int. J. Hydrogen Energy. 2017. Vol. 42. P. 405–415. doi:10.1016/j.ijhydene.2016.10.104.

Zaika Yu.V., Kostikova E.K. Computer simulation of hydrogen thermodesorption// Adv. in Mater. Sci. and Appl. 2014. Vol. 3. Iss. 3. P. 120–129. doi:10.5963/AMSA0303003.

Zaika Yu.V., Kostikova E.K. Determination of effective recombination coefficient by thermodesorption method// Int. J. Hydrogen Energy. 2014. Vol. 39. P. 15818–15826. doi:10.1016/j.ijhydene.2014.07.117.

Zaika Yu.V., Rodchenkova N.I. Boundary-value problem with moving bounds and dynamic boundary conditions: diffusion peak of TDS-spectrum of dehydriding// Appl. Math. Model. 2009. Vol. 33. Iss. 10. P. 3776–3791. doi:10.1016/j.apm.2008.12.018.

Zaika Yu.V. The solvability of the equations for a model of gas transfer through membranes with dynamic boundary conditions// Comp. Maths. Math. Phys. 1996. Vol. 36. Iss. 12. P. 1731–1741.




DOI: http://dx.doi.org/10.17076/mat646

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019