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WSD ALGORITHM BASED ON A NEW METHOD OF
VECTOR-WORD CONTEXTS PROXIMITY CALCULATION
VIA e-FILTRATION

A. N. Kirillov, N. B. Krizhanovskaya, A. A. Krizhanovsky

Institute of Applied Mathematical Research of the Karelian Research Centre
of the Russian Academy of Sciences

The problem of word sense disambiguation (WSD) is considered in the article. Set
of synonyms (synsets) and sentences with these synonyms are taken. It is necessary
to automatically select the meaning of the word in the sentence. 1285 sentences
were tagged by experts, namely, one of the dictionary meanings was selected by
experts for target words. To solve the WSD problem, an algorithm based on a new
method of vector-word contexts proximity calculation is proposed. A preliminary
e-filtering of words is performed, both in the sentence and in the set of synonyms, in
order to achieve higher accuracy. An extensive program of experiments was carried
out. Four algorithms are implemented, including the new algorithm. Experiments
have shown that in some cases the new algorithm produces better results. The
developed software and the tagged corpus have an open license and are available
online. Wiktionary and Wikisource are used. A brief description of this work can
be viewed as slides (https://goo.gl/9ak6Gt). A video lecture in Russian about this
research is available online (https://youtu.be/-DLmRkepf58).

Keywords: synonym; synset; corpus linguistics; word2vec; Wikisource; WSD;
RusVectores; Wiktionary.

A. H. Kupunnos, H. B. KpuxkanoBckas, A. A. KpuxxkaHoBcKuii.
AJITOPUTM PEIIIEHUMNA WSD-3AJAYN HA OCHOBE
HOBOTI'O CITOCOBA BbIYMCJIEHUA BJIN30CTU
KOHTEKCTOB C YYHETOM e-®UJIBTPAIINUN CJIOB

Paccmorpena 3ajada paspernenust jgekcudeckoil muorosnaunoctu (WSD), a umen-
HO: I10 U3BECTHBIM HabOpaM CMHOHMMOB (CHHCETBI) U MPEIJIOKEHUI ¢ STUMU CUHO-
HUMaMU TPeDdyeTcs aBTOMATHYECKHU OIPEIEJNTh, B KAKOM 3HAYCHUH HCIIOJIb30BAHO
CJIOBO B IIPEJJIOXKEHNH. DKCIepTaMu ObLIN pa3MedeHbl 1285 mpe/iioyKeHnii, BoIOpa-
HO OJIHO W3 3apaHee M3BECTHBIX 3HaueHnii (cunceros). st perennst WSD-3ama4m
[IPE/IJTOZKEH aJrOPUTM, OCHOBAHHBII Ha HOBOM CIIOCOOE BBIYUCJICHUS OJIM30CTHA KOH-
TekcToB. [Ipu 3ToM jy1st 60JIee BHICOKOII TOYHOCTU BBIIIOJIHSIETCH IIPEIBAPUTETbHAS
e-puiibTpaliys CJI0B, KaK B IIPEJJIOXKEHNN, TaK U B Habope cuHOHUMOB. [IpoBeieHa
oOIIMpHAasi MPOrpaMMa, SKCIIEPUMEHTOB. Pean30Bano 4eTbIipe aJlrOpUTMa, BKIIIOIas
MIPEJJIOXKEHHBINA. DKCIIEPUMEHTBI IMOKA3aJIi, 9TO B Psijie CJIydaeB HOBBIH aJropuTM
IMOKa3bIBAET JIYUIIIIE PE3YJIbTAaThl. PazpaboTanHoe MporpaMMHOe 0OeCIieueHue U pas3-
MEUYEHHBI! KOPILYC C OTKPBITON JIUIEH3MeH JOCTYIHBI OHyIaitH. Vcrmoap30Banbl cuHCe-
Tul BukucioBapst u Tekctol Bukureku. Kparkoe onucanme paboThl B BUIE CJIaii10B
npocrynso 1o ceouike (https://goo.gl/9ak6Gt), Bumeo ¢ JOKII0M TaKXKe JOCTYIIHO
onmaita (https://youtu.be/-DLmRkepf58).

KnoueBble c0Ba: CHHOHNM; CHHCET; KOPIIyCHAs JUHIBUCTHKA; word2vec; Bu-
kureka; WSD; RusVectores; Bukuciiosapsb.
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INTRODUCTION

The problem of word sense disambiguation
(WSD) is a real challenge to computer scientists
and linguists. Lexical ambiguity is widespread
and is one of the obstructions in natural language
processing.

In our previous work “Calculated attributes
of synonym sets” [6], we have proposed the
geometric approach to mathematical modeling
of synonym set (synset) using the word vector
representation. Several geometric characteristics
of the synset words were suggested (synset
interior, synset word rank and centrality). They
are used to select the most significant synset
words, i.e. the words whose senses are the nearest
to the sense of the synset.

The topic related to polysemy, synonyms,
filtering and WSD is continued in this article. Let
us formulate the mathematical foundations for
solving the problems of computational linguistics
in this article.

Using the approach proposed in the paper [2],
we present the WSD algorithm based on a
new context distance (proximity) calculation
via e-filtration. The experiments show the
advantages of the proposed distance over the
traditional average vectors similarity measure of
distance between contexts.

NEW £-PROXIMITY BETWEEN FINITE SETS

It is quite evident that the context distance
choice is one of the crucial factors influencing
WSD algorithms. Here, in order to classify
discrete structures, namely contexts, we propose
a new approach to context proximity based on
Hausdorff metric and symmetric difference of
sets: AAB =(AUB)\ (AN B).

Fig. 1. The set AAB is the shaded part of circles

Recall the mnotion of Hausdorff metric.
Consider a metric space (X, 0) where X is a set,
0 is a metric in X . Define the e-dilatation A + &
ofaset AC X

A+e=U{B.(z):x € A},

where B.(x) is a closed ball centered at x with
the radius €.

The Hausdorff distance pg(A, B) between
compact nonempty sets A and B is

or(A,B) =min{e > 0: (A C B+e)A(B C A+e)},

where A+ ¢, B+ ¢ are the e-dilatations of A and
B. Consider the following sets (Fig. 2):

A(e)=AN(B+¢), B(e)=BN(A+e¢).

Fig. 2. Two sets A+¢ and B+¢ are the e-dilatations
of segments A and B, and two new proposed
set-valued maps A(e) and B(e) were inspired by
Hausdorff distance

Then
or(A,B) =min{e >0: A(e) UB(e) = AU B}.

Consider two contexts W1 = {wi1,...,Wim},
Wy = {wa, ..., wan }, where wy;, wo; are words
in the contexts, ¢« = 1,..m, j = 1,..,n.
Denote by V1 = {v11, ..., vim}, V2 = {v21, ..., v2n }
the sets of vectors wvy;, wp; corresponding to
the words wi;, wsgj. Recall that generally in
WSD procedures, the distance between words
is measured by similarity function, which is
a cosine of angle between vectors representing

R, _ _(v,v9)
words: sim(vi,ve) = oo

a scalar (inner) product of vectors vy, vy, and
||vi|] is & norm of vector, i = 1,2. In what follows,
sim(v1,v2) € [—1,1]. Thus, the less distance the
more similarity. Keeping in mind the latter
remark, we introduce the following e-proximity

where (v1,v2) is
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of vector contexts V7, Vs. Given € > 0, construct
the sets

C(V1,Va,e) ={u,v:u e Vi,v € Vo, sim(u,v) > e}.

D(Vi,Va,e) = (ViU Va) \ C(V1, Va).

Supposing that sim plays the role of a metric,
then C(V1, V5, ¢€) is analogous to the expression
A(e) U B(e) in the definition of the Hausdorff
distance.

Denote by |Y| the power of a set Y C X,
Ry ={z:2>0,2 € R}.

Definition 1. The K-proximity of contexts
Vi, Vs is the function

|C Vl,‘/Q,E)
K(Vi,Va,¢e) = W

It is clear that K (V1,Va,e) € [0,1]. We also
define the following function.

Definition 2. The K-proximity of contexts
Vi, Vs is the function
; [C(V1,Va,¢€)|
K V 5 V ,6 — ,
W28 = 007 V2. )

describing the ratio of “near” and ‘“distant”
elements of sets.

The definition implies that min K (V;, Va, ) = 0,

max K (V1, Va,e) = |[Vi1 U V,|. The presence of
1 in the denominator permits to avoid zero
denominator when |D(Vy, Vs, e)| = 0.

The ubiquitous distance ¢ between contexts
Vi,Va is based on the similarity of average
vectors:  o(Vi,V2) = sim(V1,Va). But
the example (Fig. 3) shows that for two
geometrically distant and not too similar
structures o(Vi,V2) =1, that is the similarity
o takes the maximum value.

Example
Consider the sets A = {al,ag,ag}_,)B = {bi}
pictured in Fig. 3, where a1 + a3 = 0, az = by.
Then, sim(A, B) = sim(3(a1 + a2 + az),by) =
sim(az,b1) =1, K(A,B,e) = 2, K(A,B,e) = 3.
The equality of average vectors does not mean

the coincidence of A and B, which are rather
different (Fig. 3).

Fig. 3. An example of similar average vectors (A =

az = by = B) and totally different sets of vectors:
{a17a27a3} and {bl}

AVERAGE ALGORITHM WITH SYNONYMS
e=-FILTRATION
Consider a sentence Sy, = (wy...w]...wy)

containing a target word w; (denote it as w™).
and a vector representation S = (vy...vS...vy)
of Sy, where w; is a word, v; is a vector
representation of w;. Denote v; as v*. Suppose
the target word w* has [ senses. Denote by
syn}! a synset corresponding to k-th sense, k =
L., 0 synf = {wp1, ..., wk, }, where wy, are
synonyms. Let synp = {vk1,...,vk, } be a set
of vector representations of synonyms wy,, p =

In what follows, we introduce a procedure of
e-filtration, the idea of which is borrowed from
the paper [2].

The synset filtration is the formation of a
so called candidate set which consists of those
synonyms whose similarity with the words from
a sentence is higher than a similarity threshold e.

The first average algorithm 1, described
below, uses average vectors of words of sentences
and average vectors of the candidate set of
synonyms in synsets.

This algorithm contains the following lines.

Line 1. Calculate the average vector of words
of the sentence S

1 &
S:njz:;vj

Lines 3-6. Given ¢ > 0, let us construct the
filtered set of synonyms for each synset

candy(g) = {u € syny : u # v*, sim(u,v*) > e}.

Denote by si(¢) = |(candy(g))| the power of a set
candy(e).

Line 7. Calculate for si(e) > 0 the average
vector of the synset candidates

. 1
syny(e) = ) Z u.

u€candy(€)

If sx(e) = 0, then let syn, () be equal to the zero
vector.

Line 8. Calculate the similarity of the average
vectors of the sentence and the k-th filtered
synset

simg () = sim(syn(e), S).

Line 10-11. Suppose mazy=1,. i{simg(e)} =
simyx(e), 1.e. k* € {1,...,1} is the number of the
largest simy(e). If k* is not unique, then take
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Algorithm 1: Average algorithm with synonyms e-filtration

Data: v* — vector of the target word w* with [ senses (synsets),

v; € S, S — sentence with the target word w*, v* € S,

{syny} — synsets of the target word, that is syn; > v*, k = 1,1.

Result: k* € {1,...,1} is the number of the sense of the word w* in the sentence S.
. n
1 5= %J;l Vj, the average vector of words of the sentence S
2 do
take e > 0
foreach synset of the target word
4 foreach syn; > v* do
construct the filtered set candy(c) of the synset syny:
cand(e) = {u € syny : u # v*, sim(u,v*) > e}
6 Sk(z’;‘) = |candk(€)\, number of candidates of synonyms
the average vector of synset candidates:
ﬁ(s) > w, ifsg(e) >0
7 Wk(é) = uEcandy(€)
0 5 if Sk (8) =0
the similarity of average vectors of the sentence and the k-th filtered synset:
simg(e) = sim(syn(e), S)
end
10 simyx(e) = krnlaxl{simk(g)} = k*€{1,...,l} , k" is the number of the largest simy(e)

11 while k* is not unique

another ¢ > 0 and repeat the procedure from
line 3.

Result: the target word w* has the sense
corresponding to the k*-th synset synj..

Remark: in the case ¢ = 0, we denote this
algorithm as Ag-algorithm. In this case, the
traditional averaging of similarity is used.

Note. Ap-algorithm was wused in
experiments, it was implemented in Python.!

our

Ag-algorithm example

A simple example and figures 4-6 will help to
understand how this Ag-algorithm works.

Take some dictionary word wy with several
senses and several synonym sets (for example,
syny and syng) and the sentence S with this word
(Fig. 4). The task is to select a meaning (synset)
of wa (that is the target word is wj) used in the
sentence S via the Ag-algorithm.

Let us match the input data and the symbols
used in the Ag-algorithm. The word “ciy>xuTn”
(sluzhit’) corresponds to the vector vs.

Fig. 4. Digest of the Wiktionary entry “ciyzxutn”
(sluzhit’) and mean vectors symy and Symy of the
synonyms sets syni, syns and the sentence S with
this word w;

! See the function selectSynsetForSentenceByAverageSimilarity in the file https://github.com/componavt/
wcorpus.py/blob/master/src/test_synset_for_sentence/lib_sfors/synset_selector.py
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https://github.com/componavt/wcorpus.py/blob/master/src/test_synset_for_sentence/lib_sfors/synset_selector.py
https://github.com/componavt/wcorpus.py/blob/master/src/test_synset_for_sentence/lib_sfors/synset_selector.py

Fig. 5. Sample source data are (1) vertices vy...v5
corresponding to words of the sentence S, the
vertex vy was excluded since it corresponds to the
target word wj, and (2) the target word wji with
two synsets syn; and syng (Fig. 4), (3) vertices
(vectors 2correspond to words) of the first synset are

1 1 2
{Vsyny s Vsyn, } and the second synset — {vg, .., 5y, }

There is a dictionary article about this word
in the Wiktionary, see Fig. 4 (a parsed database
of Wiktionary is used in our projects).?

Two synonym sets of this Wiktionary entry
are denoted by syn; and synas.

Mean values of the vectors corresponding to
synonyms in these synsets will be denoted as
syn, and syn,, and S is the mean vector of all
vectors corresponding to words in the sentence S
containing the word “ciyxurs” (sluzhit’).

AVERAGE ALGORITHM WITH SENTENCE
AND SYNONYMS &e-FILTRATION (A.)

This algorithm 2 is a modification of
algorithm 1. The filtration of a sentence is added
to synset filtration. Namely, we select a word
from the sentence for which the similarity with at
least one synonym from the synset is higher than
the similarity threshold . Then, we average the
set of selected words forming the set of candidates
from the sentence. Let us explain algorithm 2 line
by line.

Lines 2-5. Given € > 0, let us construct the set
of words of the sentence S filtered by synonyms
of the k-th synset syng

candpS(e) = {v € S : Ju € syny, sim(v,u) > ¢,
v£ v u# v}
Denote by Si(e) = |candyS(e)| the power of
the set candyS(e).
Line 6. Calculate the average vector of words
of the filtered sentence
>

_ 1
candyS(e) = ——
vEcandS(g)

Sk(e)

2See section “Web of tools and resources” on page 156.
3

Fig. 6. Similarity between the mean value of vectors
of the sentence and the first synonym set is lower
than the similarity with the second synset, that is
sim(syn,, S) < sim(Symn,y, S). Thus, the second sense
of the target word w3 (the second synset syns) will

be selected in the sentence S by Ag-algorithm

If Sk(e) = 0, then let candS(e) be equal to the
zero vector.

Lines 7-8. Construct filtered sets of synonyms

cand syny(e) = {u € syny : v € S, sim(u,v) > ¢,

u# v v £ 0}

Denote by sx(e) = |cand synk(e)| the power
of the k-th filtered synonym set.

Line 9. Calculate for si(e) > 0 the average
vector of the k-th synset of candidates

1
5 X

u€cand syny(e)

cand syng(e) =

If sx(e) = 0, then cand syny(e) equals to the zero
vector.

Line 10. Calculate the similarity of the
average vectors of the filtered sentence and the
k-th filtered synset

simy(e) = sim(candS(e), cand syng(e)).

Lines 12-13. Suppose mazy=1,. {simy(e)} =
simyx (), i.e. k* € {1,...,1} is the number of the
largest simg(e). If k* is not unique then take
another ¢ > 0 and repeat the procedure from
line 2.

Result: the target word w* in the sentence S
has the sense corresponding to the k*-th synset
syn..

This algorithm was implemented in Python.3

See the function selectSynsetForSentenceByAverageSimilarityModified in the file https://github.com/

componavt/wcorpus.py/blob/master/src/test_synset_for_sentence/lib_sfors/synset_selector.py
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Algorithm 2: Average algorithm with sentence and synonyms e-filtration (A.)

Data: v* — vector of the target word w* with [ senses (synsets),
v; € 5, 5 — sentence with the target word w*, v* € S,
{syny} — synsets of the target word, that is syn; > v*, k = 1,1.
Result: £* € {1,...,1} is the number of the sense of the word w* in the sentence S.

do
2 take e > 0

[y

foreach synset of the target word
3 foreach synj > v* do

10

construct the set of words of the sentence S filtered by synonyms of the k-th synset
SYng
candpS(e) ={v € S : Ju € syng, sim(v,u) > ¢e,v # v*,u # v*}
Sk(ﬁ) = |candkS(8)\, number of candidates of the sentence;
the average vector of sentence candidates:
1 .
T(E) Z v, if Sk (5) >0
vEcandS(e)
0 y if S}c (E) =0
e-filtration of the synset syn, by the sentence S:
cand syng(e) = {u € syny : Jv € S, sim(u,v) > e,u # v*,v # v*}
Sk(g) = |ccmd Synk(6)|, number of candidates of synonyms
the average vector of synset candidates:
1
) > 4,
u€cand syny(e)
e .
0, if sp(e) =0
the similarity of the average vectors of the sentence and the k-th filtered synset:

simy(e) = sim(candS(e), cand syni(e))

candS(e) =

if sy, (E) >0
cand syny(e) =

11 end

12 Simpx (8) = kgllaxl{Simk(g)} = k* e {1, .. .,l} , k¥ is the number of the largest sim(e)

=1,...,

13 while k£* is not unique

K-ALGORITHM BASED ON &-DILATATION

The algorithm 3 (K-algorithm) is based on
the function K(A,B,e) (see previous section
“New e-proximity between finite sets” on
page 150), where A = syny, that is k-th synset,
and B = S, where S is a sentence. The algorithm
includes the following steps.

Lines 2—4. Given € > 0, let us construct the
Ci(e) set of “near” words of the k-th synset and
the sentence S.

Line 5. Denote by Dy(e) the set of “distant”
words

Dy(e) = (SUsyng) \ Ck(e).

Line 6. Calculate K() as the ratio of “ncar”
and “distant” elements of the sets
2 |Cr(e)]
Ki(e) = ————.
R ETNE]

Lines 8-9. Suppose maxk:17,,,’ll~(;€(5) = Kj- ().

If £* is not unique, then take another £ > 0 and
repeat the procedure from line 2.

Algorithm 3: K-algorithm based on
e-dilatation

Data: v* — vector of target word w* with
[ senses (synsets), v; € S, v* € 5,
{syni} — synsets of v*, k = 1,1.

Result: k* € {1,...,1} is the number of

the sense of the word w* in the
sentence S.

1 do

take e > 0

foreach synset of the target word

foreach syn; > v* do
set of near words:

Cr(e) = {u,v:

u € syng,v € S, sim(u,v) > ¢}
set of distant words:

Dy(e) = (S U syny) \ Ck(e)
ratio of ‘‘near’ and ‘‘distant’’
elements of the sets:

; &
Ki(e) = mim

end

get the number of the largest ratio k™

K (e) = nax Ki(e)

=1,...,

while k* is not unique
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Result: the target word w* has the sense
corresponding to the £*-th synset synj'..

An example of constructing C and D sets is
presented in Fig. 7 and Table. It uses the same
source data as for the Ap-algorithm, see Fig. 5.

Remark. This algorithm is applicable to the
K-function described in the previous section?
as well. This algorithm was implemented in
Python.?

More details for this example (Fig. 7) are
presented in Table, which shows C and D sets
with different € and values of the K-function.

Bold type of word-vertices in Table indicates
new vertices. These new vertices are captured by
a set of “near” vertices C' and these vertices are

Fig. 7. An example of series of Cy () (sets of words of
k-th synset which are close and near to the sentence
S) in the K-algorithm based on e-dilatation. The
growth of the dilation of the vertices of the second
synset {vl,,,,v2,,,} captures the vertices of the
sentence S = {v1,vs3,v4,v5} faster than the dilation
of the vertices of the first synset. In other symbols:
(syna+e)NS D (syny+¢e)NS. That is, according to
the K-algorithm, the second value of the word-vector
v, represented by the synset syno, will be selected
for the sentence S

excluded from the set of “distant” vertices D with
each subsequent dilatation extension with each
subsequent ¢. For example, in the transition from
€1 to g2 the set Da(e1) loses the vertex vs. During
this transition £; — €9 the set Cy(e2) gets the
same vertex vs in comparison with the set Cy(eq).

In Fig. 8, the function Kj(e) shows the
proximity of the sentence S and the synset synq,
the function Ka(e) — the proximity of S and the
synset syno. It can be seen in Figure 8 that with
decreasing ¢, the value of K»(c) grows faster than
Kl (6)

Therefore, the sentence S is closer to the
second synset syns. The same result can be seen
in the previous Fig. 7.

Fig. 8. Left-continuous step functions K (¢), Ko (e)
show that the sentence S is closer to the second synset

SYno

* See the function selectSynsetForSentenceByAlienDegree in the file https://github. com/componavt/wcorpus.py/
blob/master/src/test_synset_for_sentence/lib_sfors/synset_selector.py
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An example of the K-algorithm treating the word ws, which has two synsets syni, syns and the sentence S,
where wy € 5, see Fig. 4. The number of the algorithm iteration corresponds to the index of €. Let the series
of € be ordered so that 1 =g > &1 > &9 > ... > g7 = —1. It is known that |Cy U Dy \ va| = |S \ v2| = 6, that
is the total number of words in the synsets and in the sentence are constants.

e Ose) Ds(e) |Cg\ [Da|  Ks(e)
Ri(e) = rdip iy

eg 9 v1, U3, V4, Us, viym, 'Ugym’ 0 6 0.0

€1 V1, vgynz v3, V4, Us, vgynZ 2 4 %

g2 V1, Ugyngv Vs V4, Vs, v;ynz 3 3 %

€3 V1, vgynz, V3, vslyn2 V4, Us 4 2 %
Ci(e) Di(e) [C1 D] Ki(e)

€4 vgynl, (2 ,U;ynﬁ V1, V3, Us 2 4 %
Ca(e) Ds(e) [Ca| |Da|  Ks(e)

€5 V1, vgynz, V3, UgynQ, V4, Vs, 16/ 6 0 6
Ci(e) Di(e) [C1| D] Ki(e)

€6 U?ynlv V4, v;ynl V1, V3, Us 3 3 %

EXPERIMENTS where “WCorpus Parser” is the set of WCorpus

Web of tools and resources

This section describes the resources used in
our research, namely: Wikisource, Wiktionary,
WCorpus and RusVectores.

The developed WCorpus® system includes
texts extracted from Wikisource and provides
the user with a text corpus analysis tool. This
system is based on the Laravel framework (PHP
programming language). MySQL database is
used.©

Wikisource. The texts of Wikipedia have
been used as a basis for several contemporary
corpora [5]. But there is no mention of using texts
from Wikisource in text processing. Wikisource is
an open online digital library with texts in many
languages. Wikisource sites contains 10 millions
of texts” in more than 38 languages.® Russian
Wikisource (the database dump as of February
2017) was used in our research.

Texts parsing. The texts of Wikisource were
parsed, analysed and stored to the WCorpus
database. Let us describe this process in detail.
The database dump containing all texts of
Russian Wikisource was taken from “Wikimedia
Downloads” site.” These Wikisource database
files were imported into the local MySQL
database titled “Wikisource Database” in Fig. 9,

*https://github.com/componavt/wcorpus

PHP-scripts which analyse and parse the texts in

the follow

1. First,

artic

ing three steps.

the title and the text of an
le from the Wikisource database are

extracted (560 thousands of texts). One text
corresponds to one page on Wikisource site.
It may be small (for example, several lines of
a poem), medium (chapter or short story),
or huge size (e.g. the size of the page with
the novella “The Eternal Husband” written
by Fyodor Dostoyevsky is 500 KB). Text
preprocessing includes the following steps:

Texts written in English and texts in
Russian orthography before 1918 were
excluded; about 12 thousands texts
were excluded.

Service information (wiki markup,
references, categories and so on) was
removed from the text.

Very short texts were excluded. As
a result, 377 thousand texts were
extracted.

Texts splitting into sentences produced
6 millions of sentences.

Sentences were split into words (1.5
millions of unique words).

5See WCorpus database scheme: https://github.com/componavt/wcorpus/blob/master/doc/workbench/db_

scheme.png

"https://stats.wikimedia.org/wikisource/EN/TablesWikipediaZZ.htm
Shttps://stats.wikimedia.org/wikisource/EN/Sitemap.htm

“https://dumps.wikimedia.org/backup-index.html
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Fig. 9. The architecture of WCorpus system and the use of other resources

3. Secondly, word forms were lemmatized Nine words

using phpMorphy!'® program (0.9 million
lemmas).

Only polysemous words which have at least
two meanings with different sets of synonyms are

4. Lastly, lemmas, wordforms, sentences and suitable for our evaluation of WSD algorithms.
relations between words and sentences were The following criteria for the selection of
stored to WCorpus database (Fig. 9). synonyms and sets of synonyms from Russian

Wiktionary were used:

In our previous work “Calculated attributes
of synonym sets” [6] we also used neural network 1.
models of the great project RusVectores!'!, which
is a kind of a word2vec tool based on Russian
texts [9].

Context similarity algorithms evaluation

In order to evaluate the proposed WSD
algorithms, several words were selected from a
dictionary, then sentences with these words were
extracted from the corpus and tagged by experts.

Yhttps://packagist.org/packages/componavt/phpmorphy
Yhttp://rusvectores.org/en/
2http://whinger.krc.karelia.ru/soft/wikokit/index.html
Y3https://github.com/componavt/piwidict

Only single-word synonyms are extracted
from Wiktionary. This is due to the
fact that the RusVectores neural network
model “ruscorpora_2017 1 600 2”7 used
in our research does not support multiword
expressions.

If a word has meanings with equal sets
of synonyms, then these sets were skipped
because it is not possible to discern different
meanings of the word using only these
synonyms without additional information.

14See information about the subcorpus in the section “Sentences of three Russian writers” on page 158.
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A list of polysemous words was extracted from
the parsed Russian Wiktionary'? using PHP API
piwidict!? (Fig. 9).

Thus, 9 polysemous Russian words (presented
in the subcorpus'#) were selected by experts from
this Wiktionary list, namely: “6e3nma” (bezdna),
“opocarn” (brosat’), “Bummeri” (vidnyy), “mo-

Hectn” (donesti), “monocurs”’ (donosit’), “3a-

uarue” (zanyatiye), “muxoit” (likhoy), “orcro-
na” (otsyuda), “ymauno” (udachno). The tenth
word “cayxure’ (sluzhit’) was left out of
consideration, because there are 1259 of 1308
sentences with this frequent word to be tagged
by experts in the future (Fig. 10).

Fig. 10. Russian verb “ciryxxurs” (sluzhit’) has seven meanings and seven synsets in the developed system
WCorpus. 49 sentences are already linked to relevant senses of this verb. 1259 sentences remain to be tagged

by experts

Sentences of three Russian writers

The sentences which contain previously
defined 9 words were to be selected from
the corpus and tagged by experts. But the
Wikisource corpus was too huge for this purpose.
So, in our research a subcorpus of Wikisource
texts was used. These are the texts written
by Fyodor Dostoevsky, Leo Tolstoy and Anton
Chekhov.

Analysis of the created WCorpus database
with texts of three writers shows that the
subcorpus contains:!®

2635 texts;

e 333 thousand sentences;

e 215 thousand wordforms;

e 76 thousand lemmas;

e 4.3 million wordform-sentence links;

Texts of this subcorpus contain 1285 sentences
with these 9 words, wherein 9 words have in total
42 synsets (senses). It was developed A graphical
user interface (webform) of the WCorpus system
(Fig. 10) was developed, where experts selected

one of the senses of the target word for each of
the 1285 sentences.

This subcorpus database with tagged
sentences and linked synsets is available
online [7].

Text processing and calculations

These 1285 sentences were extracted from the
corpus. Sentences were split into tokens. Then
wordforms were extracted. All the wordforms
were lowercase and lemmatized. Therefore,
a sentence is a bag of words. Sentences with only
one word were skipped.

The phpMorpy lemmatizer takes a
wordform and yields possible lemmas with the
corresponding part of speech (POS). Information
on POS of a word is needed to work with the
RusVectores’ prediction neural network model
“ruscorpora_ 2017 1 600 2", because to get a
vector it is necessary to ask for a word and POS,
for example “serve VERB”. Only nouns, verbs,
adjectives and adverbs remain in a sentence bag
of words, other words were skipped.

The computer program (Python scripts)
which works with the WCorpus database and
RusVectores was written and presented in the

15See SQL-queries applied to the subcorpus https://github.com/componavt/wcorpus/wiki/SQL

https://github.com/componavt/wcorpus . py
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form of the project wecorpus.py at GitHub.!6
The source code in the file synset selector.py'”
implements three algorithms described in the
article, namely:

o Ap-algorithm implemented in the function
selectSynsetForSentence ByAverageSimila-

rity();
e K-algorithm — function selectSynsetForSen-
tenceByAlienDegree();

e A_-algorithm — function selectSynsetForSen-
tence ByAverageSimilarityModified().

These three algorithms calculated and
selected one of the possible synsets for each of
1285 sentences. o

Two algorithms (K and A.) have an input
parameter of e, therefore, a cycle with a step of

0.01 from 0 to 1 was added, which resulted in 100
iterations for each sentence.

Then, answers generated by the algorithms
were compared with the synsets selected by
experts.

The number of sentences with the sense
correctly tagged by the K-algorithm for nine
Russian words presented in Fig. 11.

The legend of this figure lists target words
with numbers in brackets (X,Y’), where X is the
number of sentences with these words, Y is the
number of senses.

The curves for the words “SAHATUE”
(“ZANYATIYE”, solid line with star points)
and “OTCIOJA” (“OTSYUDA”, solid line with
triangle points) are quite high for some ¢, because
(1) there are many sentences with these words
(352 and 308) in our subcorpus, (2) these words
have few meanings (3 and 2).

Fig. 11. Number of sentences with the correct tagged sense for nine Russian words by the K-algorithm

"https://github.com/componavt/wcorpus.py/blob/master/src/test_synset_for_sentence/lib_sfors/

synset_selector.py
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Fig. 12. Normalised data with the fraction of sentences with correctly tagged sense for nine Russian words

More meanings, poorer results.

If a word has more meanings, then the
algorithm yields even poorer results. It is visible
in the normalised data (Fig. 12), where examples
with good results are “OTCIO/IA” (OTSYUDA)
and “JIMXON” (LIKHOY, dash dot line with
diamond points) with 2 meanings; the example
“BPOCATB” (BROSAT”, bold dotted line) with
9 meanings has the worst result (the lowest
dotted curve).

Comparison of three algorithms

Let us compare three algorithms by summing
the results for all nine words. Fig. 13 contains the

following curves: Ag-algorithm — long dash line;
K-algorithm — solid line; A.-algorithm — dash
line.

The Ap-algorithm does not depend on e. It
showed mediocre results.

~ The K-algorithm yields better results than
Ac-algorithm when € > 0.15.

The K-algorithm showed the best results on
the interval [0.15; 0.35]. Namely, more than 700
sentences (out of 1285 human-tagged sentences)
were properly tagged with the K-algorithm on
this interval (Fig. 13).

Fig. 13. Comparison of Ag-algorithm, K-algorithm, A.-algorithm
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Comparison of four algorithms as applied
to nine words

Let us compare the results of running four
algorithms for each word separately (Fig. 14): Ao-
algorithm — long dash line with triangle points;
K-algorithm — solid line with square points; A.-
algorithm — dash line with circle points; “Most
frequent meaning” — dashed line with X marks.

The simple “most frequent meaning”
algorithm was added to compare the results. This
algorithm does not depend on the variable ¢, it
selects the meaning (synset) that is the most
frequent in our corpus of texts. In Fig. 14 this
algorithm corresponds to a dashed line with X
marks.

The results of the “most frequent meaning”
algorithm and Ag-algorithm are similar (Fig. 14).

The K-algorithm is the absolute champion
in this competition, that is for each word

there exists an e such that the K-algorithm
outperforms other algorithms (Fig. 14).

Let us explain the calculation of the curves in
Fig. 14.

For the Ag-algorithm and the “most frequent
meaning” algorithm, the meaning (synset) is
calculated for each of the nine words on the set of
1285 sentences. Thus, 1285 - 2 calculations were
performed.

And again, the A.-algorithm and the
K-algorithm depend on the variable . But how
can the results be shown without the ¢ axis? If at
least one value of ¢ gives a positive result, then
we suppose that the WSD problem was correctly
solved for this sentence by the algorithm.

The value on the Y axis for the selected word
(for A-algorithm and K-algorithm) is equal to
the sum of such correctly determined sentences
(with different values of ¢) in Fig. 14.

Fig. 14. Comparison of Ag-algorithm, K-algorithm, A.-algorithm and the most frequent meaning

Perhaps it would be more correct to fix
e corresponding to the maximum number of
correctly determined sentences. Then, the result
will not be so optimistic.

To show the complexity of comparing and
evaluating e-algorithms (that is, algorithms that
depend on €), let us try to analyze the results of
the K-algorithm, shown in Fig 15.

The percentage (proportion) of correctly

determined 1285 sentences for 9 words by the
K-algorithm, where the ¢ variable changes from 0

to 1 in increments of 0.01, is presented in Fig. 15.
Thus, 1285 - 100 calculations were performed.

These proportions are distributed over a set of
possible calculated results from 0% (no sentence
is guessed) to 100% (all sentences are guessed)
for each of nine words.

This Figure 15 does not show which e-values
produce better or poorer results, although it
could be seen in Figures 11-13. But the Figure
does show the set and the quality of the results
obtained with the help of the K-algorithm. For
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example, the word “nmxoit” (likhoy) with 22
sentences and 100 different £ has only 8 different
outcomes of the K-algorithm, seven of which lie
in the region above 50%, that is, more than eleven
sentences are guessed at any €.

For example, the word “Gpocarn” (brosat’)
has the largest number of meanings in our data
set, it has 9 synonym sets in our dictionary
and 11 meanings in Russian Wiktionary.'® All

possible results of the K-algorithm for this word
are distributed in the range of 10-30%. The
maximum share of guessed sentences is 30.61%.
Note that this value is achieved when ¢ = 0.39,
and this is clearly shown in Figure 12, see the
thick dotted line.

All  calculations, charts drawn from
experimental data and results of the experiments
are available online in Google Sheets [8].

Fig. 15. Proportions of correctly guessed sentences distributed over a set of possible calculated results

CONCLUSIONS

The development of the corpus analysis
system WCorpus'® was started. 377 thousand
texts were extracted from Russian Wikisource,
processed and uploaded to this corpus.

Context-predictive models of the RusVectores
project are used to calculate the distance between
lemmas. Scripts in Python were developed to
process RusVectores data, see the wcorpus.py
project on the GitHub website.

The WSD algorithm based on a new method
of vector-word contexts proximity calculation is
proposed and implemented. Experiments have
shown that in a number of cases the new
algorithm shows better results.

The future work is matching Russian lexical
resources (Wiktionary, WCorpus) to Wikidata
objects [11].

¥ https: //ru.wiktionary.org/wiki/6pocars
Yhttps://github. com/componavt/wcorpus

The study was supported by the Russian
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