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LIMIT DISTRIBUTIONS OF VERTEX DEGREES
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The configuration graph where vertex degrees are independent identically
distributed random variables is often used for modeling of complex networks such
as the Internet. We consider a random graph consisting of N vertices. The random
variables η1, . . . , ηN are equal to the degrees of vertices with the numbers 1, . . . , N.
The probability P{ηi = k}, i = 1, . . . , N, k = 1, 2, . . . , is equivalent to h(k)/kτ as
k → ∞, where h(x) is a slowly varying function integrable in any finite interval,
τ > 1. We obtain the limit distributions of the maximum vertex degree and the
number of vertices with a given degree under the condition that the sum of degrees
is equal to n and N,n→∞.

K e ywo r d s: configuration graph; the limit distribution; vertex degree.

И. А. Чеплюкова, Ю. Л. Павлов. ПРЕДЕЛЬНЫЕ РАСПРЕ-
ДЕЛЕНИЯ СТЕПЕНЕЙ ВЕРШИН В УСЛОВНОМ КОНФИ-
ГУРАЦИОННОМ ГРАФЕ

Конфигурационный граф, степени вершин которого являются независимыми
одинаково распределенными случайными величинами, часто используют для
моделирования сложных сетей, таких как Интернет. Мы рассматриваем слу-
чайный граф с N вершинами. Случайные величины η1, . . . , ηN равны степеням
вершин с номерами 1, . . . , N. Вероятность P{ηi = k}, i = 1, . . . , N, k = 1, 2, . . . ,
пропорциональна величине h(k)/kτ при k → ∞, где h(x) – интегрируемая на
любом конечном интервале медленно меняющаяся функция и τ > 1. Найде-
ны предельные распределения максимальной степени вершин и числа вершин
заданной степени при условии, что сумма степеней равна n при N,n→∞.

К люч е вы е c л о в а: конфигурационный граф; предельное распределение; сте-
пень вершины.

Introduction

The study of random graphs has been causing
growing interest in connection with the wide use
of these models for the description of complex
networks (see, e. g.[3, 6, 11]. Such models can
be used to adequate by describe the topology of
transport, electricity, social, telecommunication
networks and global Internet. Observations on

real networks showed that their topology can
be described by random graphs with vertex
degrees being independent identically distributed
random variables with power-law distribution. In
[3] it was suggested that for large k the number of
vertices with the degree k is proportional to k−τ ,
where τ > 1. That is why in [11] it was suggested
that the distribution of the vertex degree η is
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P{η > k} = h(k)k−τ+1, k = 1, 2, . . . , (1)

where h(k) is a slowly varying function.
We consider a random graph consisting of

N+1 vertices. Let random variables η1, . . . , ηN be
equal to the degrees of vertices with the numbers
1, . . . , N. Each vertex is assigned a certain
degree in accordance with the distribution (1).
The vertex degree is the number of stubs (or
semiedges) that are numbered in an arbitrary
order. Stubs are vertex edges for which adjacent
nodes are not yet determined. The vertex 0 is
auxiliary and has degree 0 if the sum of all other
vertices is even, else the degree is 1. It is clear that
we need to use the auxiliary vertex 0 for the sum
of degrees to be even.The graph is constructed
by joining all the stubs pairwise equiprobably to
form links.

There are many papers where the results
describing the limit behaviour of different
random graph characteristics were obtained. The
authors of [11] were sure (without proof) that the
function h(k) in (1) does not influence the limit
results, and that to study the configuration graph
one can replace h(k) with the constant 1. In our
work we will show that the role of the slowly
varying function h(k) is more complicated.

We consider the subset of random graphs
under the condition η1 + · · · + ηN = n. Such
conditional graphs can be useful for modeling
of networks for which we can estimate the
number of communications. They are useful
also for studying networks without conditions
on the number of links by averaging the
results of conditional graphs with respect to the
distribution of the sum of degrees. Conditional
random graphs were first analyzed in [9], where
h(k) ≡ 1. Obviosly, the limit behaviour of a
random graph depends on the degree structure.
In [9] the limit distributions were obtained for
the maximum vertex degree and the number
of vertices of a given degree as N and n tend
to infinity in such a way that 1 < n/N <
ζ(τ), where ζ(τ) is the value of the Rimman’s
zeta-function at the point τ. For other zones of
parameters analogous results were obtained in
papers [7, 8, 10].

Here we extend the results on the maximum
vertex degree and the number of vertices of
a given degree to the configuration graphs
with degree distribution (1), where h(k) is not
constant. In the following section the main results
are formulated, then auxiliary statements are

proved. And the last section contains proofs of
the main results.

Main Results

In the paper we assume that the distributions
of node degrees are

pk = P{ηi = k} =
h(k)

kτΣ(1, τ)
, (2)

where i = 1, . . . , N, k = 1, 2, . . . , τ >
1, h(k) is a slowly varying function integrable
in any finite interval and

Σ(x, y) =

∞∑
k=1

xkh(k)k−y. (3)

We denote also by ξ1, . . . , ξN the auxiliary
independent identically distributed random
variables such that

pr(λ) = P{ξi = k} = λkpkΣ(1, τ)/Σ(λ, τ), (4)

where i = 1, . . . , N, k = 1, 2, . . . and the
parameter λ = λ(n,N) belongs to the interval
(0, 1). From (2)–(4) we obtain

m = Eξ1 = Σ(λ, τ − 1)/Σ(λ, τ),

(5)
σ2 = Dξ1 = Σ(λ, τ − 2)/Σ(λ, τ)−m2.

Let the parameter λ = λ(n,N) of the
distribution (4) be determined by the relation

m = Σ(λ, τ − 1)/Σ(λ, τ) = n/N. (6)

We denote by η(N) and µr the maximum
vertex degree and the number of vertices with
the degree r, respectively. We get the following
results.

Theorem 1. Let n,N → ∞, n/N →
1, (n−N)3/N2 →∞ and let r be such that

Nλr−1h(r)

rτ
→∞, Nλr+1h(r + 1)

Σ(λ, τ)(r + 1)τ
→ γ,

where γ is a nonnegative constant. Then

P{η(N) = r} → e−γ ,

P{η(N) = r + 1} → 1− e−γ .

We introduce the conditions:
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(A1) τ > 4;

(A2) 3 < τ 6 4, (1− λ)τ−4−ε/
√

N→ 0;
(A3) 5/2 < τ 6 3, N(1− λ)11−3τ+ε > C3 > 0;
(A4) τ = 5/2, N(− ln(1− λ))2(1− λ)7/2+ε > C4 > 0;
(A5) 1 < τ < 5/2, N(1− λ)6−τ+ε > C5 > 0,

where ε is some sufficiently small positive
constant.

Theorem 2. Let N,n → ∞, n/N ↗ Σ(1, τ −
1)/Σ(1, τ), one of the following conditions (A1)
– (A5) is fulfilled, and r = r(N,n) take values in
such a way that

Nλr+1h(r + 1)

(r + 1)τΣ(λ, τ)(1− λ)
→ γ,

where γ is a positive constant. Then

P{η(N) 6 r} = e−γ(1 + o(1)).

Theorem 3. Let n,N → ∞ and one of the
following conditions is fulfilled

1. n/N → 1, r = 1, 2, (n−N)2/N →∞;

2. n/N → 1, r > 3, Nλr−1 →∞;

3. n/N ↗ Σ(1, τ − 1)/Σ(1, τ), parameters
τ,N, n are determined by one of the
conditions (A1) – (A5).

Then for a nonnegative integer k uniformly
with respect to u = (k − Npr(λ))/(σrr

√
N) lies

in any fixed finite interval

P{µr = k} =
1

σrr
√

2πN
e−u

2/2(1 + o(1)),

where

σ2rr = pr(λ)

(
1− pr(λ)− (n/N − r)2

σ2
pr(λ)

)
.

Theorem 4. Let n,N →∞, n/N → 1, n−N →
∞, r > 2. Then

P{µr = k} =
1 + o(1)

k!
(Npr(λ))k exp {−Npr(λ)}

uniformly with respect to (k−Npr(λ))/
√
Npr(λ)

lies in any fixed finite interval. This assertion
remains true for r → ∞ if 1 < n/N <
Σ(1, τ − 1)/Σ(1, τ) under one of the following
conditions:

1. n/N → 1, n−N →∞;

2. n/N ↗ Σ(1, τ − 1)/Σ(1, τ), parameters
τ,N, n are determined by one of the
conditions (A1) – (A5).

Remark. In [2], a case of these theorems under
the condition 1 < C1 6 n/N 6 C2 <
Σ(1, τ − 1)/Σ(1, τ) was proved.

Auxiliary results

We prove some auxiliary statements (Lemmas
1–6), and use them to prove Theorems 1–5. The
technique of obtaining these theorems is based
on the generalized allocation scheme suggested
by V. F. Kolchin [5]. It is readily seen that for
our subset of random graphs

P{η1 = k1, . . . , ηN = kN} =

= P{ξ1 = k1, . . . , ξN = kN |ξ1 + . . .+ ξN = n}.

Therefore, the conditions of the generalized
allocation scheme are valid (see [5]). Let
ξ
(r)
1 , . . . , ξ

(r)
N and ξ̃

(r)
1 , . . . , ξ̃

(r)
N be two sets

of independent identically distributed random
variables such that

P{ξ(r)1 = k} = P{ξ1 = k|ξ1 6 r},
(7)

P{ξ̃(r)1 = k} = P{ξ1 = k|ξ1 6= r}, k = 1, 2, . . .

We also put

ζN = ξ1 + . . .+ ξN , ζ
(r)
N = ξ

(r)
1 + . . .+ ξ

(r)
N ,

ζ̃
(r)
N = ξ̃

(r)
1 + . . .+ ξ̃

(r)
N , Pr = P{ξ1 > r}.

It is shown in [5] that

P{η(N) 6 r} = (1− Pr)N
P{ζ(r)N = n}
P{ζN = n}

, (8)

P{µr = k} =

(
N

k

)
pkr (λ)(1− pr(λ))N−k ×

×
P{ζ̃(r)N−k = n− kr}

P{ζN = n}
. (9)

From (2)–(6) we can deduce the next lemma.

Lemma 1. Let N,n → ∞. The next assertions
are true:
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1. if n/N → 1 then λ = ((n/N − 1) p1/p2) (1+
o(1));

2. if n/N ↗ Σ(1, τ − 1)/Σ(1, τ) then λ→ 1.

Let us consider the limit behaviour of ζN .

Lemma 2. Under the conditions of Theorems
1–4

P{ζN = k} =
1 + o(1))

σ
√

2πN
exp

{
−(k − n)2

2σ2N

}
uniformly with respect to integers k such that
(k − n)/(σ

√
N) lies in any fixed finite interval.

Proof. Let ϕ(t) be the characteristic function of
the random variable ξ1. Then

ϕ(t) = Σ(eitλ, τ)/Σ(λ, τ). (10)

Further we will need an explicit form of the
third derivative of lnϕ(t). From (4) it is not hard
to get that

(lnϕ(t))′′′ = i

(
−Σ(eitλ, τ − 3)

Σ(eitλ, τ)
+

+ 3
Σ(eitλ, τ − 2)Σ(eitλ, τ − 1)

Σ2(eitλ, τ)
−

− 2
Σ3(eitλ, τ − 1)

Σ3(eitλ, τ)

)
. (11)

Let n/N → 1. From (2)–(4) it is easy to obtain
that

σ2 = O(λ), |(lnϕ(t))′′′| 6 C3λ. (12)

Let ϕN (t) be the characteristic function of the
random variable (ζN − n)/(σ

√
N). Then

lnϕN (t) = − int

σ
√
N

+N lnϕ

(
t

σ
√
N

)
=

= − t
2

2
+
t3Q(t/(σ

√
N))

6σ3
√
N

. (13)

Then from Lemma 1, (12) and (13) follows
relation

lnϕN (t) = −t2/2 + o(1). (14)

Let n/N ↗ Σ(1, τ − 1)/Σ(1, τ). It is well
known (see e.g. [4]) that the slowly varying

function integrable in any finite interval has the
following properties:

1. h(x) > 1/
√
x for sufficiently large x;

2. lim
x→∞

h(x+ t)/h(x) = 1, t > 0;

3. lim
x→∞

h(x)/xε = 0, lim
x→∞

h(x)xε =∞
for any ε > 0;

4. h(x) = c(x) exp
{∫ x

α ε(t)/tdt
}
, where

α > 0, c(x)→ c 6= 0, ε(x)→ 0,
as x→∞.

(15)

Using the properties (15) and Lemma 1 we
can deduce that for j = 0, 1, 2, 3

|Σ(eitλ, τ − j)| 6 C4λΦ(λ, τ − j, 1) +

+ λΦ(λ, τ − j − ε, 1), (16)
|Σ(eitλ, τ)| > C5 as t→ 0, (17)

where Φ(x, s, a) is the Lerch transcendent
function:

Φ(x, s, a) =

∞∑
k=0

xk(k + a)−s. (18)

It is well known (see e.g. [1]) that for the Lerch
transcendent function the following properties
are valid:

1. λΦ(λ, 1, 1) = − ln(1− λ),
(1− λ)Φ(λ, 0, 1) = 1;

2. (1− λ)Φ(λ, τ, 1) = O((1− λ)τ ),
τ < 1, λ→ 1.

(19)

From (3), (5), (11), (16)–(19) it is not hard to
get that

σ2 >

 C6 > 0, τ > 5/2;
C7(− ln(1− λ)), τ = 5/2;
C8(1− λ)τ−5/2, 1 < τ < 5/2,

(20)

σ2 6

{
C9 > 0, τ > 3;
C10(1− λ)τ−3−ε, 1 < τ 6 3,

(21)

|ϕ′′′(t)| =
{
O(1), τ > 4;
O((1− λ)τ−4−ε), 1 < τ 6 4.

(22)

The next expression is valid for a sufficiently
small t:

lnϕ(t) = t (lnϕ(t))′ |t=o +
t2

2
(lnϕ(t))′′ |t=o +

+
t3

6
Q(t), (23)

where |Q(t)| 6 2 max
|u|6|t|

|(lnϕ(u))′′′|.

Using (13), (20)–(23) and (A1)–(A5) we get
(14).
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According to the inversion formula we
represent the probability P{ζN = k} as the
integral

P{ζN = k} =
1

σ
√

2πN

πσ
√
N∫

−πσ
√
N

e−iztϕN (t)dt,

where z = (k − n)/(σ
√
N). Since

(
√

2π)−1e−z
2/2 = (2π)−1

∞∫
−∞

e−izt−t
2/2dt, (24)

the difference
R = 2π[σ

√
NP{ζN = k} − (2π)−1/2e−z

2/2]

can be rewritten as the sum of four integrals:
R = I1 + I2 + I3 + I4, where

I1 =

A∫
−A

e−izt[ϕN (t)− e−t2/2]dt,

I2 =

∫
A<|t|<aσ

√
N

e−iztϕN (t)dt,

(25)

I3 =

∫
aσ
√
N6|t|6πσ

√
N

e−iztϕN (t)dt,

I4 = −
∫

A<|t|

e−izt−t
2/2dt,

the positive constants A and a will be chosen
later. Lemma 2 will be proved if we show that by
choosing sufficiently large n,N the difference R
can be made arbitrarily small. From (14) we get
that I1 → 0. Moreover,

|I4| 6
∫

A<|t|

e−t
2/2dt, (26)

and the integral I4 is as small as desired, provided
that A is large enough.

Let us estimate the integral I2. From (23)
and (12) we obtain that for sufficiently small
a |ϕN (t)| 6 e−C11t2 as n/N → 1, therefore the
next estimate is true |I2| 6

∫
A<|t| e

−C11t2dt, and
the integral I2 is small for large enough A. From
(13), (17) and (20) we obtain the same estimate
as n/N ↗ Σ(1, τ − 1)/Σ(1, τ), τ > 4.

Let n/N ↗ Σ(1, τ − 1)/Σ(1, τ), τ 6 4. We
divide I2 into integrals I ′2 and I ′′2 , where the
integration domains are

{t : A < |t| 6 aB(λ, τ)σ
√
N}

and

{t : aB(λ, τ)σ
√
N < |t| 6 aσ

√
N},

where

B(λ, τ) =


(1− λ)−τ+4+ε, 5/2 < τ 6 4;
(− ln(1− λ))(1− λ)3/2+ε, τ = 5/2;
(1− λ)3/2+ε, 1 < τ < 5/2.

(27)

From (13) we get that

lnϕ

(
t

σ
√
N

)
=

=
itm

σ
√
N
− t2

2N
+

t3

6σ3N3/2
Q

(
t

σ
√
N

)
,

where

|Q(t/(σ
√
N))| 6 2 max

|u|6|t/(σ
√
N)|
| ln′′′ ϕ(u)|.

In the integration domains of the integral
I ′2 t/(σ

√
N) → 0, then from Lemma 1, (17),

(20) and (27) we obtain:∣∣∣∣ t

(σ3
√
N)

Q

(
t

σ
√
N

)∣∣∣∣ 6 a.

It follows that for small enough a |ϕN (t)| 6
exp{−C12t

2}. Therefore

|I ′2| 6 2

∫
A<|t|

e−C12t2dt,

and the integral I ′2 is as small as desired, provided
that A is large enough. To estimate the integral
I ′′2 we expand the function Σ(λz, τ), where z =

eit/(σ
√
N) in the Taylor series near the point

z = 1. Then

ϕ(t) = 1− (1 + o(1))Σ(λ, τ − 1)Σ−1(λ, τ)×

×(1− cos(t/(σ
√
N))− i sin(t/(σ

√
N))).

Therefore

|ϕN (t)| 6 |ϕN (t/(σ
√
N))| 6
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6 exp{C13N(1− cos(t/(σ
√
N)))}.

Using (27), the conditions (A1) – (A5) and the
inequality

1− cos(t/(σ
√
N)) > 1− (1− C14t

2/(σ2N)),

|t| < aσ
√
N,

we can show that

|I ′′2 | 6
∞∫

aB(λ,τ)σ
√
N

e−C14t2/σ2

dt 6

6 C15
σ

aB(λ, τ)
√
N
e−C14a2B2(λ,τ)N → 0.

Let us consider the integral I3. For ε 6 |t| 6 π
the inequality

|ϕ(t)| 6 e−C16 (28)

is valid. Then under the condition that n/N → 1
it can be shown that

ϕ(t) = eit
(
1 + λp2(e

it − 1)/p1
)

+ o(λ2).

From this and Lemma 1 we get that for ε 6
|t|/(σ

√
N) 6 π

|ϕ(t/(σ
√
N))| 6 e−C17λ.

Therefore using relations (12) and (25) it is not
hard to see that

|I3| 6 C18

√
n−N exp{−C19(n−N)} → 0.

Let n/N → Σ(1, τ − 1)/Σ(1, τ). From the
conditions (A1) – (A5), (21) and (28) we get that

|I3| 6 C20σ
√
Ne−C21N → 0. (29)

Thus Lemma 2 is proved.

Let ϕr(t) be the characteristic function of the
random variable (ζ

(r)
N − n)/(σ

√
N).

Lemma 3. Let n,N →∞. Then uniformly with
respect to t in any fixed finite interval the next
conclusions are true

1. if n/N → 1, (n−N)3/N2 → ∞, NPr−1 →
∞, NPr → γ, where γ is a nonnegative
constant, then for s = 0,±1 ϕr+s(t) →
e−t

2/2;

2. if n/N → Σ(1, τ − 1)/Σ(1, τ), NPr → γ,
where γ is a positive constant, parameters
τ,N, n are determined by the conditions
(A1) – (A5) then ϕr(t)→ e−t

2/2.

Proof. From (7) and (10) it is easy to see that

ϕr(t) = (30)

= exp

{
− itn

σ
√
N

}
(1− Pr)−NϕN

(
t

σ
√
N

)
×

×

(
1− (1 + o(1))

∞∑
k=r+1

pk(λ) exp

{
itk

σ
√
N

})N
.

It is not hard to get that
∞∑

k=r+1

pk(λ) exp
{
tk/(σ

√
N)
}

=

= Pr +R(t), (31)

where R(t) 6
∣∣∣t/σ√N ∣∣∣∑∞k=r+1 pk(λ)k.

Let n/N → 1. It is clear that

NPr = N
∑
i>0

pr+i+1(λ) =

= N

 M∑
i=0

pr+i+1(λ) +
∑

i>M+1

pr+i+1(λ)

 , (32)

the positive constant M will be chosen later. For
the fixed integer r we get from Lemma 1, (2)–(4)
and (15) that

M∑
i=0

pr+i+1(λ) =
Nλr+1h(r + 1)

Σ(λ, τ)(r + 1)τ
(1 + o(1))

and for large enough N

∑
i>M+1

pr+i+1(λ) = O

 M∑
i>0

pr+i+1(λ)

 .

Therefore

NPr =
Nλr+1h(r + 1)

Σ(λ, τ)(r + 1)τ
(1 + o(1)). (33)

Using NPr → γ we obtain that for fixed integer r

(σ
√
N)−1

∑
k>r

kpk(λ) = o
(
N−1

)
. (34)

As r →∞ we can deduce from Lemma 1, (2)–(4)
and (15) the relation (33) is valid.

From (2)–(4), (15) and the relation NPr → γ
we can get that as r →∞

(σ
√
N)−1

∑
k>r

kpk(λ) 6 C22t(r + 1)pr(λ)/(σ
√
N).
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Since NPr−1 → ∞ it is not hard to show that
r = o(

√
n−N). From this, (31), (35) it follows

that

(σ
√
N)−1

∑
k>r

kpk(λ) = o
(
N−1

)
.

Therefore, for n/N → 1 the relation ϕr(t) →
e−t

2/2 holds.
For s = 1 we get that NPr+1 → 0. Therefore

in this case the assertion of Lemma 3 follows from
(30) by substituting r with r + 1.

Let s = −1. By analogy with the estimate
(34) we can obtain that as r →∞

(σ
√
N)−1

∑
k>r

pk(λ)k 6 C23rpr(λ)/(σ
√
N).

Using (15) and the condition (n−N)3/N2 →∞
the relation (34) follows from this and (2)–(4).
By analogy with this estimate for fixed integer r
we can get that

1

σ
√
N

∑
k>r

pk(λ)k =

=
trpr(λ)

σ
√
N

∑
k>r

λk−r
( r
k

)τ−1 h(k)

h(r)
6

6 C24
trpr(λ)

σ
√
N

= o

(
1

N

)
.

Therefore, as n/N → 1, the relation ϕr−1(t) →
e−t

2/2 holds.
Let n/N ↗ Σ(1, τ − 1)/Σ(1, τ). Using (2)–

(4), the properties of the slowly varying function
(15), Lemma 1 and (32) we can deduce that

M∑
i=0

pr+i+1(λ) = pr+1(λ)

M∑
i=0

λi(1 + o(1)). (36)

From (15) it is not hard to get

∑
i>M+1

pr+i+1(λ) = o

(
M∑
i=0

pr+i+1(λ)

)
. (37)

From the condition NPr → γ it follows that
r →∞. Then from (32), (36), (37) we get that

NPr =
Nλr+1h(r + 1)

Σ(λ, τ)(r + 1)τ (1− λ)
(1 + o(1)). (38)

Using Lemma 1, (15), (38) and the condition
NPr → γ it is not hard to see that

t

σ
√
N

∑
k>r+1

pk(λ)k 6 C25
t(r + 1)pr+1(λ)

σ
√
N(1− λ)

6

6 C26
t(r + 1)γ

σN3/2
. (39)

From (38) and the condition NPr → γ it is easy
to see that

Nλr+1h(r + 1)

(Σ(λ, τ)(r + 1)τ (1− λ))
→ γ > 0. (40)

Using the conditions (A1)–(A5), (20) and (40) we
get that (r + 1)/(σ

√
N) = o(1). From this and

(39) we can obtain that

t(σ
√
N)−1

∑
k>r+1

pk(λ)k = o
(
N−1

)
.

Then the assertion of Lemma 3 follows from (30)
and (31).

Lemma 4. Let n,N → ∞ and one of the
following conditions be fulfilled

1. n/N → 1, (n−N)3/N2 → ∞, NPr−1 →
∞, NPr → γ, where γ is a nonnegative
constant;

2. n/N ↗ Σ(1, τ − 1)/Σ(1, τ), NPr →
γ, where γ is a positive constant and
parameters τ,N, n are determined by one of
the conditions (A1)–(A5).

Then

P{ζ(r)N = k} =
1 + o(1)

σ
√

2πN
exp

{
−(k − n)2

2σ2N

}
uniformly with respect to integers k such that
(k − n)/(σ

√
N) lies in any fixed finite interval.

Proof. We follow the scheme of proving Lemma
2. We represent the probability P{ζ(r)N = k} as
the integral

P
{
ζ
(r)
N = k

}
=

1

2πσ
√
N

∫ πσ
√
N

−πσ
√
N
e−iztϕr(t)dt,

where z = (k − n)/(σ
√
N) and ϕr(t) is the

characteristic function of the random variable
(ζ

(r)
N − n)/(σ

√
N). Using (24) the difference

R = 2π[σ
√
NP{ζ(r)N = k} − (2π)−1/2e−t

2/2]

can be rewritten as the sum of four integrals:
R = I

(r)
1 + I

(r)
2 + I

(r)
3 + I4, where I4 is given

by (25) and I(r)1 –I(r)3 are constructed similarly to
I1 – I3 by substituting ϕr(t) instead of ϕN (t) in
(25).
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From Lemma 3 it follows that I(r)1 → 0. From,
(12), (20)–(23) and (30) we get that

|ϕr(t)| 6 (1−Pr)−N
(
exp

{
C27t

2/N
}

+ C28/N
)N

.

Therefore, |I(r)2 | 6 C29

∫∞
A e−C30t2dt. It is clear

that I
(r)
2 can be made arbitrarily small by

choosing a sufficiently large A.
It is easy to show that we can estimate the

integral I(r)3 by analogy with I3 in Lemma 2. For
I4 we can use the estimation (26). This completes
the proof of Lemma 4.

It is not hard to see that the conclusion of
Lemma 4 is true when replacing r with r− 1 and
r + 1 as n/N → 1. In these cases the proofs are
similar to the proof of Lemma 4.

From (4) and (7) we have that

mr = Eξ̃
(r)
1 = (m− rpr(λ))/(1− pr(λ)),

σ2r = Dξ̃
(r)
1 =

σ2

(1− pr(λ))2
× (41)

×
(

1− pr(λ)− (m− r)2

σ2
pr(λ)

)
.

Let ϕ̃r(t) be the characteristic function of
the random variable (ζ̃

(r)
N − Smr)/(σr

√
S). By

analogy with Lemmas 2–4 it is not hard to prove
the following assertions.

Lemma 5. Let n,N → ∞ and one of the
following conditions be fulfilled

1. n/N → 1, r = 1, (n−N)2/N →∞;

2. n/N → 1, r = 2, (n−N)2/N →∞;

3. n/N → 1, r > 3, n−N →∞;

4. n/N → Σ(1, τ − 1)/Σ(1, τ) and parameters
τ,N, n are determined by one of the
conditions (A1)–(A5).

Then for S = N(1− pr(λ))(1 + o(1))

ϕ̃r(t)→ e−t
2/2

uniformly with respect to t in any fixed finite
interval.

Lemma 6. Under the conditions of Lemma 5 for
S = N(1− pr(λ))(1 + o(1))

P
{
ζ̃
(r)
S = k

}
=

1

σr
√

2πS
e−z

2/2(1 + o(1))

uniformly with respect to integers k such that
z = (k − Smr)/(σr

√
S) lies in any fixed finite

interval.

Proofs of theorems

We are now ready to prove Theorems 1–4.
Using Lemmas 2 and 4 we obtain

P{ζ(r)N = n}/P{ζN = n} → 1. (42)

The assertion of Theorem 1 follows from
NPr → γ, NPr−1 → ∞, (8), (33) and (42). The
assertion of Theorem 2 follows from (8), (38) and
(42).

According to the normal approximation of
the binomial distribution under the condition
Npr(λ)(1− pr(λ))→∞ Theorem 3 follows from
(9), (41) and Lemmas 2, 6.

Using Poisson approximation of the binomial
distribution as pr(λ) → 0, Lemmas 2, 6 and
relations (9), (41) we can obtain the assertion
of Theorem 4.
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