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. A. YemwmokoBa. O KOPPUIIMEHTE KJIACTEPU3AIINN
KOHOUTYPAIIMOHHBIX I'PA®OB

Hremumym npuraaduuz mamemamuveckur uccaedosanuti KapHI] PAH,
OUI] «Kapeavcruti nayunond yenwmp PAH» (ya. Hywxunckas, 11, Ilemposasodck,
Pecnybaura Kapeaus, Poccus, 185910)

PaccmarpuBatorcest kKoudwurypanunonnbie rpadsr ¢ N Beprmaamu. CrerneHu Bep-
muH rpada sBJISOTCS HE3aBUCUMBIMU OJIMHAKOBO PACIIPEIEIEHHBIMU CJIyIailHbI-
MU BeJIUYUHAMU, PACIIPEe/IeHNe KOTOPBIX HABJISETCH CTEIIEHHBIM PACIIPE/IETCHN-
€M C [OJOXKHUTEJIbHBIM IapaMmerpoM 7, rae 7 = 7(N) u3Mensercs B jualasoHe
0 <cp 7 < e < 00 WM MOXKET IDUHUMATH HE TOJBKO (DUKCUPOBAHHBIE 3HAUE-
uaus. [losmydyeHbl T€OpeMbl, ONMMCHIBAIOIINE IIPEe/IbHOE MoBelAeHne KodbduimenTa
KJIACTEPU3AINY I TaKUX rpadoB ¢ YUCIOM BepinH N, CTpeMamuMcs K 6ecKo-
HEYHOCTH.

Knmodesnsie caoBa: KOHGUIYPAIMOHHBIH Tpad; KIACTEPHBIN KOIMDDUIIEHT;
[peJieJIbHBIE TEOPEMBI

HOna uurupoBaunusa: Cheplyukova I. A. On the clustering coefficient of
configuration graphs // Tpyunbt Kapesnbckoro nayunoro nenrpa PAH. 2025. Ne 4.
C. 107-113. doi: 10.17076 /mat2073
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OuunancupoBanne. OuHaHCOBOE 0ObOECIEUEHNE WCCIEIOBAHNNE OCYIIECTBIISIOCH
n3 CcpecTB deaepasbHOTO OI0KeTa Ha BBIMOJHEHNE TOCYIAPCTBEHHOTO 33 IaHuUsT
KapHIT PAH (MucruTyT OpUKIaIHbIX MaTeMarmdeckux ucciaegosanuii KapHIT

PAH).

INTRODUCTION

Random graphs have been widely used to
model complex communication networks such
as mobile networks, Internet, transport, social
networks, etc. (e. g. [5, 7]). One of the most
commonly used classes of random graphs is
the configuration model. This model was first
introduced in [3].

This paper deals with the configuration
graph proposed in [11] with the vertex
degrees being independent identically distributed
random variables following the distribution:

(k)
T -

where the random variable & is equal to the
degree of any vertex and h(x) is a slowly varying
function, i. e. h(ax)/h(x) — 1 for every a > 0
and x — oo.

The construction of the configuration model
can be described as follows. Random variables
equal to vertex degrees are drawn independently
from the distribution (1). The degree of each
vertex in the configuration graph is equal to the
number of its incident semiedges. All semiedges
are numbered in an arbitrary order. Obviously,
the sum of vertex degrees has to be even.
Otherwise, an auxiliary vertex with degree one
is added. The graph is constructed by joining all
semiedges pairwise equiprobably to form edges.
Because pairing is done without restrictions,
multiple edges and loops can appear.

There are many works (e. g. [4, 11])
where results describing the limit behaviour of
configuration graphs were obtained. Attention
in the studies of configuration graphs has
been given not only to the properties of the
degree structure, but also to other numerical
characteristics (see [8]). One of such graph
characteristics is the clustering coefficient.

For the graph G the clustering coefficient Cg
can be defined as follows (see [8])

P{{ >k} =

€(1,2),k=1,2,...

3 X number of graph triangles

number of connected triples of vertices’

where a “connected triple” means a single vertex
connected by edges to two others. In effect, Cq
measures the fraction of triples that have their
third edge filled in to complete a triangle. Here
we define this notion for random graphs. We will
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use the terminology adopted in [7]. Consider the
graph G = G(V, E) with N vertices where V is
the set of its vertices and F is the set of its edges.
We say that the distinct vertices, (i, j, k) form an
occupied triangle when the edges ij, jk and ki
are all occupied. Note that (i,7,k) is the same
triangle as (i, k, j) and as any other permutation.
Following [7] (see equation (4.7.1)), we define the
clustering coeflicient of a random graph G to be

Co = E(Ag)
E(Weg)’
where
Ag = Z I{ij, jk, ki occupied },
i,J,k€V
Wa = E I{ij,ik occupied,},
ij,keV

I{A} is the indicator of an event A. Thus, Ag is
six times the number of triangles in G, and Wg
is two times the number of adjacent edges in G,
and Cg is the ratio of the number of expected
triangles to the expected number of adjacent
edges. Note that the number of triangles formed
by three vertices can be more than one if the
edges between the vertices are multiples.

It is proved in [8] that for this configuration
graph the clustering coefficient Cg is

(E)

CG - Nm ’ (2)
where N is equal to the number of vertices of the
graph,

pr = P{{ =k},

qr = (k+ 1)pgs1/m, k=0,1,2,...,

0
m = Z kpk.
k=1

It was noted in [11] that the function h(k)
does not affect the main asymptotic properties
of the configuration graph as N — oo. So, the
authors of [11] suggest to use the simplest case
h(k) = 1. In this case

pr=P{{=k}=k"T"—(k+1)", k=1,2,....
(3)
It follows from (3) that as k — oo
T
Pk ~ jEaSE (4)
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In [9] Pavlov considered a configuration graph
in which the distribution of vertex degrees must
meet only the following condition as k — oo:

d

P{g: k} ~ k:glnhk’

(5)
where d > 0, g > 1, h > 0. Obviously,
by virtue of (4), the distribution (3) satisfies
the condition (5) as d = 7, ¢ = 7 + 1,
h = 0. In [9], the limit theorems for the
clustering coefficient C of such graphs with fixed
parameters g and h were formulated. However,
it was noted that the vertex degree distribution
can change as the network size grows (e. g. [2]).
In [10], conditional configuration graphs are
considered where the degrees of the vertices
are independent identically distributed random
variables following the power-law distribution
and the parameter of this distribution is a
random variable uniformly distributed on the
interval [a,b], 0 < a < b < oo. The limit
distributions of the number of vertices with a
given degree were obtained in [10].

Here we consider a configuration graph in
which vertex degrees have the distribution (3),
where the distribution parameter 7 can vary in
the interval 0 < ¢ < 7 € ¢ < o and is
not necessarly fixed. The aim is to study the
limit behavior of the clustering coefficient Cg
for such configuration graphs (Theorem 1 and
Theorem 2).

Theorem 1 describes the limit behavior of
the clustering coefficient Cg for the case of
the parameter 7 > 2 as N — oo. In this
case, the variance D¢ of a random variable
equal to the vertex degree is finite. Theorem 2
describes the limit behavior of Cg as 0 < ¢ <
7 < 2. It is not hard to see that in this case
the variance D¢ is infinite. Here, we will use
the notion “asymptotically almost sure” (a.a.s.),
which means the following. Let Ax be an event of
a random graph with N vertices having a certain
property. We say that A happens a.a.s., if

im P =1
W P}

Let the random variables &1,&2,...,En be
equal to the degrees of vertices with numbers
1,2,...,N and

75]\/}

Observe that the maximum vertex degree of our
graphs is proportional to N/7 a.a.s. (see Lemma
below). For the case of 0 < ¢ < 7 < 2 we
restrict ourselves to considering random graphs
that satisfy this condition. Namely, in Theorem 2

§vy = max{{y, . ..

we will consider conditional configuration graphs
under the condition

f(N)SuNl/T, 0<u<oo.
Theorem 2 shows that the asymptotically
clustering coefficient of a random graph depends
on the maximum vertex degree.

The article has the following structure.
Section 2 formulates the main results (Theorems
1 and 2). In section 3 these theorems are proved.

MAIN RESULTS

Consider a configuration graph in which the
vertex degrees &1,&,...,&N are independent
identically distributed random variables with the
distribution (3). If the parameter 7 > 2, then the
following assertion is true.

Theorem 1. Let N — oco. Then the relations

4(C(r = 1) = ¢(n)* /(NG(r)),

Co = if T=7(N)>c3>2;
A(T = 2)72 /(NG (7)) (1 + o(1)),
if T=7(N)\2,

hold, where {(x) is the value of the Riemann zeta
function at the point x.

Corollary 1. It follows from Theorem 1 that

1.iftr>2e3>2o0r7=7(N)\ 2,
(1 —2)2N — oo, then Cg — 0;

2. if T =7(N)\ 2, (T — 2)2N — const # 0,
then Cq tends to some positive constant;

S ifr=71(N) N\ 2, (T —2)2N — 0,
then Cqg — .

Let 0 < ¢4 < 7 < 2. Consider conditional
configuration graphs under the condition that

f(N) <uN1/T,0<u<oo.

For such conditional graphs the assertions
below are true.

Theorem 2. Let N — oo. Then
1. if T =2, then

2. if ™ 72, then

_ 4exp{—u_Q}(Nl_T/2 —2/7)?

Ca G@)2 - 72N

a.a.s.;
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S ifl<eys <7< 05 <2, then

Cr — exp{—u""} (w77 2N(4_3T)/T
¢ (1) 2—7

a.a.s.;
4. if T\ 1, then
Ca = exp{—u"'}(r — 1)3u2NU=37)/7
a.a.s.;
5. if T =1, then

uiN

Cg = exp{—u~"!
¢=epi-u iy

6. if0<cy <7 <1, then

e~ U7 (1 . 7')3u1+TN1/T
(2 —7)2

Ce =

a.a.s.

Corollary 2. [t follows from Theorem 2 that the
following assertions are true a.a.s.

1. if (1 —4/3)In N — +o0, then Cg = 0;

2.4f |(t —4/3)InN| < ¢ < o0, then Cg
is equal to the constant and this constant
depends on u;

3. if (1 —4/3)In N — —o0, then Cg = oc.

PROOFS OF THE MAIN RESULTS

First, we will prove Theorem 1. Let 7> c3>2.
In this case, m = ((7) and it follows from (2)

that )
<Z k%)
k=1 1

CC="CON T 30N

00 2
1 1
8 (ZU{ZM) <(k+1)T - (k:+2)7>>

k=1

00 2
- gﬁ(i)N (Z(Zk - 2)&) . (6)

k=2

This yields the assertion of Theorem 1 for the
case T > c3 > 2.

Let 7 = 7(N) \, 2. We will use the known
expansion of the zeta-function about point 1

(see [1]):

(A+y) =y "+c+0(y), y>0,y—0, (7)

where c¢ is the Euler—Mascheroni constant. It
follows from here and (6) that

Co =z (€ =D =)
=D o)
ST 002D )
- Wu +o(1)).

Therefore, Theorem 1 is fully proven.

Let us now prove Theorem 2. Here we consider
the conditional configuration graphs under the
condition that

g(N) <UN1/T,0<U<OO.

Clearly, for a detailed study of the clustering
coefficient Ci it is desirable to know the limit
distribution of the maximum degree of graph
vertices. The next Lemma follows from (3) and
the known classical result [6].

Lemma. Let N — oo. Then
P{{vy <zNY}=e +o(l), >0
holds.

According to Lemma for the maximal degree
§(n), the inequation &y > NY(+2) ¢ > 0 holds
a.a.s. Moreover, it follows from Lemma that

o

can be made arbitrarily close to 1 by choosing
sufficiently small positive € and 6. We can then
say that Lemma predicates that the maximum
vertex degree { ) is proportional to NYT aas.
It thus seems reasonable to consider the set of
graphs in which §y) < uNY7 where

P {Nl/(TJrE) < g(N) < 1N1/T}

N7 <u< 1/0.

So, by virtue of Lemma, the condition for the
maximal degree of our graphs in Theorem 2 is
natural.

It follows from (2) that the -clustering
coefficient C¢ for such conditional configuration
graphs can be obtained from the following

relation: )
(; kq;)
— :1
R (8)
where

P = P{& = k|¢n) < uN'T},
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qfc:(k—i-l)pzﬂ/m/, k=0,1,2,...,

oo
m' = Z kpj..
k=1
Then, combining (3) and (8) we get

Co = P {&) < uNY7}

(sl
()

where [z] is the integer part of the number z.
Using Lemma, it is not difficult to see that

2
k(k + 1)pks+1> )

I

P g <uNY7h = e (L+o(1). (10)

From (9) and (10) it follows that

—u~7

K ()

e

Ca=

1/7]_ 2
<Zl[cu:]\1[ = k(k + 1)pk+1>
(

(S )’

Using (3), we can show that

1+ o0(1)).

/)

> kpi
k=1

(] [uNY/7]

koo ([uNYT] +1)7

k=1

and
[uN'/7]-1

> k(k+ Uprp

k=1

(13)

[un/]

1
> (2k—2)— -

' ([u/7] = 1)?

([uNV7] +1)"

~ JunNtT] -1
([uNV7] +1)"
Let 7 = 2. From (1

3) it follows that

[uN1/2]—1

> k(k+ 1)prs
k=1

(14)

[“Nm] [“Nm [uN1/2] — 1 2
=2 Z %—2 Z k:Q_ Nl/%—i-l;Q
[uNl/z] —
([uN] 4 1>2'
Using a well-known formula

[N] 1
ZE:1HN+0+8(N) (15)
k=1

N) ~1/(2N), we get

o]

11
> Z =5 N(+o(1)
k=2

where &(

(16)

then from (11)—(16
exp{—u?}In* N

) it follows that for 7 = 2

Cg = BR)N (1+ o(1)). (17)
Let 7 2. Using (13), we get
[uN*/7]-1
Z k(k + 1)pr+1 (18)
k=1
[unt/7]
=2 Z e (o(1) = [uV ] (1o(1).
It is easy to see that
[uN1/7] u
Z kT — = 1_{_0(1))]\](277—)/7 yiTde
2/NV/7

2-1)/7
— (o (U2T

92—T
2 _ 1 B N(QT)/T>
1 2—71
:2_Texp{ - lnN} (19)

x <1 —exp {— u 1nN}> (14 0(1)).

This relation together with (11), (12) and (18)

yields )
_ exp{—u"?}
Ce="apN
. (2(exp{2—;1nN} —1)(1+o(1))
2—T

_[uNl/T]2—T(1 + 0(1))) 2

_ exp{—u?}(1 + o(1)) <2exp{2;f InN} -1

¢3(2)N 2—71
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2
—exp{Q;TlnN}>
exp{—u2} (=2 +7exp{ETZIn N 2
e~V H(NI=T/2 _9/1)2
_Ae WS o). (20)

(2-7)*C )N

Let 1 < ¢4 < 7 < ¢5 < 2. Using relations (13),
(18), and the first equality of (19) we get that

[uN'/7]—1

> k(k+pr
k=1

T
C2-7

From here and (11) it is easy to see that

Co= (e C@N) <2N(2_T)/7u

W TN (1 4 0(1)).

~@NYET) (o) )

—T

. -1 2 2
= (e_“ C3(7)> NW=37)/7 (u T) (14o0(1)).
2—171
Let 7 \( 1. In the same way as in the previous

case, using the known expansion of the zeta-
function about point 1 (7) we get that

Cq = (e_ufTC?’(T)N) o

2—1
X 2N(2_7—)/7—u7 —
(2-7)

2
<uN1/T>2—T) (1 +o(1))

_ e—“(];—l)3 (uz_TN(z_ﬂ/r)z (1+0(1))
= et (= PN 4 o(1)). (22)

Let 7 = 1. From (12) and (15) we get that

[uN] uN]

kak_Z——1+o

=(1+o(1))InN.
Using (3) and (15) we can find that

(23)

[uN]-1 [uN]—1 5
Z k(k + 1)pri1 = Z (1 - k—l-2>
k=1 k=1

= uN(1+ o(1)).
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From this and (11), (23) it follows that
2
N
Co=e "2 (14001 24
o= N o). ()

Let us consider the last case where 0 < ¢; <
7 < 1. It is not hard to see that in this case
[uNl/T] u

1
(r=1)/7 il
Z == (1 +o(1))
1/Nt/™
u].*TN(l*T)/T
= (1 1)).
21 o()
From this and (12) we get that

(25)

] ]

Sk 1 [uNY/7]
Pk = P - T
k=1 =k ([“Nl/ ] +1)
u "N/ (140(1)).  (26)
1—7

Using (13), the second equality of (19), and (25)
we get that

[uN/7] [uN1/7] uNl/T]
Z k(k + Dpgr = 2 Z m 1 —2 Z kT
_ (uNl/T)Z’T (14 0(1))

- u2—TN<2—T>/T%T(1 +o(1)).

From (11), (26), and the previous relation we get
Co = exp{—u"T}(1 — T)3u1”N1/T(1 +o(1).

7(2—17)2

Taking into account the above considerations on
the maximum vertex degree, the assertion of
Theorem 2 follows from the reasoning here and
(17), (20)—(22), (24).
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