Blooms of a coccolithophore *E. huxleyi* are generally huge, occur annually and in the oceans of both Hemispheres. As a calcifying algal species, *E. huxleyi* is known to enhance the partial pressure of dissolved CO$_2$ in the surface ocean, thus reducing its ability to absorb atmospheric CO$_2$. Here we report on the results of our satellite study of CO$_2$ enhancement in the atmospheric column over *E. huxleyi* blooms in the North, Greenland, Iceland and Barents seas. The study is based on OCO-2 and wind force and direction data, and *E. huxleyi* bloom masks developed by us earlier. Eight case studies are discussed herein relating to the time period 2015–2018. The results obtained are strongly indicative that, indeed, the phenomenon of *E. huxleyi* blooms noticeably affects the carbon fluxes between the atmosphere and the surface ocean: the quantified enhancement of CO$_2$ content in the atmospheric column over the bloom area in five out of eight case studies proved to be in the range of 0.6–3.0 ppm. It is also shown that the magnitude of CO$_2$ enhancement in the atmospheric column is significantly controlled by air advection in the boundary layer.

Key words: satellite remote sensing; OCO-2 data; enhancement of atmospheric columnar CO$_2$ content over *E. huxleyi* blooms in Subarctic and Arctic seas; *Emiliania huxleyi*; wind and atmospheric advection.

E. A. Morozov, D. V. Kondrik, S. S. Chepikova, D. V. Pozdnyakov

Nansen International Environmental and Remote Sensing Centre, St. Petersburg, Russia
Introduction

Among marine biosystems, coccolithophores (class Prymnesiophyceae) are the most productive calcite-producing organisms in the world’s oceans [Thierstein, Young, 2013]. Dissolved carbon dioxide of atmospheric origin interacts with dissolved calcite with the formation of HCO$_3^-$ and Ca$^{2+}$. Thus, any increase in the partial pressure of atmospheric CO$_2$ leads to a shift between the marine suspended organic and inorganic carbon. This, in turn, is bound to affect the carbon cycle in the atmosphere–ocean surface balance.

In addition to the production of particulate calcite, coccolithophores are capable of increasing dissolved CO$_2$ partial pressure within their blooming areas [Holligan et al., 1993; Kondrik et al., 2018]. Conjointly, these two mechanisms affect the carbon balance in surface ocean and tend to weaken marine carbon sinks, which has far-reaching consequences in terms of planetary climate change [IPCC, 2014].

Within the coccolithophore group, *E. huxleyi* is the most widespread species in the world’s oceans [Westbroek et al., 1985; Moore et al., 2012]. It forms gigantic blooms with a surface of several thousand square kilometers [Kondrik et al., 2017], but sometimes exceeding one million square kilometers [Balch et al., 2014].

The aforementioned *E. huxleyi* bloom-driven enhancement of dissolved CO$_2$ partial pressure can reduce, nullify or even reverse the flux of CO$_2$ at the atmosphere-ocean interface. Indeed, Shutler et al. [2013] report on an average reduction in the monthly air-sea CO$_2$ flux by about 55 % across the marine tracts encompassing extensive *E. huxleyi* blooms in the North Atlantic, whereas the maximum reduction over the time period 1998–2007 was registered at 155 %.

Here we present our results on several case studies in the North, Iceland, Greenland and Barents seas. The study was designed to quantify the atmospheric columnar CO$_2$ over *E. huxleyi* blooms based on remote sensing data from the Orbiting Carbon Observatory OCO-2 that was put into orbit in 2014 to study CO$_2$ concentration and spatio-temporal distribution in the Earth’s atmosphere [Crisp, 2015]. The areas targeted in the above seas were identified in advance making use of *E. huxleyi* bloom masks developed on the basis of ocean color data from the ocean-colour climate-change initiative OC CCI data archive [Sathyendranath, Krasser, 2014].

Methodology

Previously, based on the developed bloom masking technology, i. e. the methodology of *E. huxleyi* bloom detection and contouring, the 1998–2018 time series of blooms of this alga were obtained for the Subarctic Atlantic and Arctic Seas [Kondrik et al., 2019; Selyuzhenok et al., 2019]. For the revealed locations of *E. huxleyi* blooms, the 2015–2018 OCO-2 data were subjected to sieve analysis in order to ascertain the cases of OCO-2 footprint trajectory crossing both the bloom area and adjoining bloom-free waters. The identified situations were further analyzed as case studies in order to investigate on a quantitative basis if there was any impact of *E. huxleyi* bloom areas on XCO$_2$ registered by OCO-2. Thus, to assess the impact, XCO$_2$ values registered along the OCO-2 footprint both over the bloom area and beyond it (either prior to reaching the bloom area or after leaving it) were compared. The resultant change in XCO$_2$, i. e. ΔXCO$_2$, was considered as a measure of the *E. huxleyi* bloom impact on the CO$_2$ exchange at the atmosphere-sea water interface, and hence, of the change in the CO$_2$ atmospheric columnar content.

All case studies also included the analysis of above water surface wind force and direction over the bloom area in order to clarify the issue of air mass advection across the satellite footprint trajectory.

Data sources

Wind data. 8-day averaged satellite data from Cross-Calibrated Multi-Platform (CCMP) data http://www.rmss.com/measurements/wind/ were employed for the time period prior to 2016 (http: www.remss.com/measurements/ccmp/). CCMP gridded surface vector winds are generated through concatenation of satellite, moored buoy,
and simulated wind data. Thus conjoined, these mutually harmonized data qualify as Level-3 ocean vector wind analysis product. Through the involvement of improved and extended input data, the CCMP product was updated up to the CCMP V2.0 data set that is reachable at the Remote Sensing Systems (RSS) portal. This updated data set combines RSS-7 V.7 radiometer wind speeds, QuikSCAT and ASCAT scatterometer wind vectors, wind speed actually measured from moored buoys, and ERA-Interim wind spatial distribution simulated with the Variational Analysis Method (VAM). The resultant product is four maps at a daily temporal and 0.25° spatial resolution.

In the case of the North Sea 2018, CCMP are unavailable, and in their stead ASCAT data, version 2.1 were exploited (http://www.remss.com/missions/ascat/). To better harmonize scatterometric and radiometric wind measurements, the ASCAT data were generated with the use of a new Geophysical Model Function, C-2015. Thus, the wind vectors that are laid upon the maps illustrating our case studies represent 8-day wind force and direction averages specifically over the areas of *E. huxleyi* blooms.

Atmospheric CO₂ content. The column averaged dry air mole fraction, XCO₂ is defined as the ratio of “the altitude-dependent CO₂ number density integrated over the atmospheric column and the column abundance of dry air” [Crisp, 2015].

Having a 16-day ground-track repeat cycle, OCO-2 yields XCO₂ values with single-sounding random errors in the range of 0.5–1 ppm at solar zenith angles up to 70°, and at the spatial resolution of 3 km² in nadir, i. e. 1.25 km in width and ~2.4 km in length, which corresponds to a ~1.8 mrad instantaneous field of view and 3 Hz sampling. In 2018, the OCO-2 data processing algorithms were improved at NASA, and the current and retrospective products (L1B/L2 Version 8 and L2LiteFileVersion 9; October 10, 2018) were released (https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_DUG.V9.pdf).

Only high quality data (i. e. unflagged data) were employed in our case studies. 8-day averaging of XCO₂ data was implemented in this study.

E. huxleyi bloom masking. The 1998–2018 time series of *E. huxleyi* blooms in the Subarctic Atlantic and Arctic oceans was retrieved from Ocean Color Climate Change Initiative (OC CCI) data through the analysis of spectra of remote sensing reflectance, *Rₛ(λ)*. The methodology is described in detail in [Kondrik et al., 2017, 2019]. Concisely, a typical *Rₛ* spectrum from a *E. huxleyi* bloom exhibits a maximum at λ = ~490 nm at the late stage of its development, when the surface water is predominantly populated by coccoliths whereas *E. huxleyi* cells have already mostly died off. Accurate delineation of *E. huxleyi* blooms was based on fulfillment of the requirement that the spectral values of *Rₛ* (sr⁻¹) in the OCO CCI standard spectral channels exceed the following statistically established thresholds: 0.001 at 412 nm, 0.008 at 443 nm, 0.01 at 490 nm, 0.008 at 510 nm, and ~ 0 at 670 nm. On this basis, masks of *E. huxleyi* blooms were plotted for the target Subarctic and Arctic seas to restore the chronicle of spatio-temporal variations of the bloom areas between 1998 and 2018.

Results and discussion

Here we present the results of eight satellite-based case studies from the Barents, Iceland, Greenland and North seas (Table, Fig., a–h). Note that red lines show the limits of the beyond-bloom areas used in this study for assessing ΔXCO₂; black arrows indicate the force and direction of wind over the bloom area; black areas are *E. huxleyi* blooms. As the Table shows, in 5 cases (The Barents, South Iceland, South Greenland, North seas) OCO-2 registered an increment of XCO₂ over *E. huxleyi* bloom areas ranging between 0.6

<table>
<thead>
<tr>
<th>Case number</th>
<th>Sea</th>
<th>Start of 8-day time interval</th>
<th>XCO₂ over bloom</th>
<th>XCO₂ beyond bloom</th>
<th>ΔXCO₂</th>
<th>Wind force (m/s) and direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Barents</td>
<td>28.07.2015</td>
<td>393.6</td>
<td>393.0</td>
<td>0.6</td>
<td>4.6 E</td>
</tr>
<tr>
<td>2</td>
<td>South Iceland</td>
<td>12.07.2015</td>
<td>396.5</td>
<td>395.0</td>
<td>1.5</td>
<td>6.1 NNE</td>
</tr>
<tr>
<td>3</td>
<td>South Greenland</td>
<td>12.07.2015</td>
<td>397.0</td>
<td>394.0</td>
<td>3.0</td>
<td>3.0 WSW</td>
</tr>
<tr>
<td>4</td>
<td>South Iceland</td>
<td>24.05.2016</td>
<td>404.0</td>
<td>404.0</td>
<td>0</td>
<td>4.9 S</td>
</tr>
<tr>
<td>5</td>
<td>South Iceland</td>
<td>01.06.2016</td>
<td>404.0</td>
<td>402.0</td>
<td>2.0</td>
<td>3.3 ESE</td>
</tr>
<tr>
<td>6</td>
<td>North</td>
<td>17.05.2018</td>
<td>410.0</td>
<td>410.0</td>
<td>0</td>
<td>4.9 NE</td>
</tr>
<tr>
<td>7</td>
<td>North</td>
<td>18.06.2018</td>
<td>408.0</td>
<td>407.0</td>
<td>1.0</td>
<td>8.4 NW</td>
</tr>
<tr>
<td>8</td>
<td>North</td>
<td>26.06.2018</td>
<td>406.0</td>
<td>406.0</td>
<td>0</td>
<td>3.1 N</td>
</tr>
</tbody>
</table>
OCO-2 footprint trajectory and along XCO₂ (ppm) track values: a–h are 1–8 Cases, respectively (see Table)
and 3.0 ppm. These numbers are fully consistent with the results we have obtained in the study of *E. huxleyi*-induced XCO$_2$ in the Black Sea as registered in 2016–2017.

However, in three cases (the South Iceland, and North seas), no XCO$_2$ enhancement was found. A combined OCO-2 and wind data analysis has shown that the explanation of the apparent absence of *E. huxleyi* blooming impact upon XCO$_2$ might reside in the effect of above water air mass advection. Indeed, for cases 4, 6, and 8 the meteorological and *E. huxleyi* blooming conditions were specific. In case 4 the blooming area was essentially inhomogeneous/fractionized, and the wind direction was southern, i.e. bringing air masses from the parts of the sea free of any *E. huxleyi* bloom influence.

In case 8 there were very similar conditions in terms of wind-driven advection of above-water air from marine tracts void of *E. huxleyi* blooming. It is also worth mentioning that the blooming area was also significantly fractionized.

A special consideration should be given to case 6. At first glance, it appears that the *E. huxleyi*-driven ΔXCO$_2$ signal should not be zero: the footprint from the parts of the sea free of any *E. huxleyi* bloom influence

Arguably, this might be an indication of some inherent property of *E. huxleyi*, and the obtained results on the increment of CO$_2$ in the atmospheric column over the blooms of this alga can be considered as representative of this phenomenon across the oceanic tracts, at least, in the Northern Hemisphere.

We express our gratitude for the financial support of this study provided by the Russian Science Foundation (RSF) under the project number 17-17-01117.

References

Сведения об авторах:

Морозов Евгений Андреевич
старший научный сотрудник
Научный фонд "Международный центр по окружающей среде и дистанционному зондированию имени Нансена"
14-я линия В. О., 7, оф. 49, Санкт-Петербург, Россия, 199034
эл. почта: evgeny.morozov@niersc.spb.ru

Кондрик Дмитрий Вячеславович
научный сотрудник
Научный фонд "Международный центр по окружающей среде и дистанционному зондированию имени Нансена"
14-я линия В. О., 7, оф. 49, Санкт-Петербург, Россия, 199034
эл. почта: dmitry.kondrik@niersc.spb.ru

Чепикова Светлана Сергеевна
младший научный сотрудник
Научный фонд "Международный центр по окружающей среде и дистанционному зондированию имени Нансена"
14-я линия В. О., 7, оф. 49, Санкт-Петербург, Россия, 199034
эл. почта: sveta.chepikova@niersc.spb.ru

Поздняков Дмитрий Викторович
заместитель директора по науке, руководитель группы водных экосистем, д. ф.-м. н., проф.
Научный фонд "Международный центр по окружающей среде и дистанционному зондированию имени Нансена"
14-я линия В. О., 7, оф. 49, Санкт-Петербург, Россия, 199034
эл. почта: dmitry.pozdnyakov@niersc.spb.ru

Сведения о Тихоморе:

Мерлин К. А., Курлян М. К., Копытова Дж., Немецкая Ю. А.
Влияние антропогенных факторов на водный биосфере Балтийского моря.
"География и геоэкология". 2019. № 4. С. 34-42.

contributors:

Morozov, Evgenii
Scientific foundation "Nansen International Environmental and Remote Sensing Centre"
14th Line, 7, Office 49, Vasilievsky Island, 199034
St. Petersburg, Russia
e-mail: evgeny.morozov@niersc.spb.ru

Kondrik, Dmitrii
Scientific foundation "Nansen International Environmental and Remote Sensing Centre"
14th Line, 7, Office 49, Vasilievsky Island, 199034
St. Petersburg, Russia
e-mail: dmitry.kondrik@niersc.spb.ru

Chepikova, Svetlana
Scientific foundation "Nansen International Environmental and Remote Sensing Centre"
14th Line, 7, Office 49, Vasilievsky Island, 199034
St. Petersburg, Russia
e-mail: sveta.chepikova@niersc.spb.ru

Pozdnyakov, Dmitry
Scientific foundation "Nansen International Environmental and Remote Sensing Centre"
14th Line, 7, Office 49, Vasilievsky Island, 199034
St. Petersburg, Russia
e-mail: dmitry.pozdnyakov@niersc.spb.ru

URL: http://www.esa-oceancolour-cci.org/?q=documents
(accessed: 05.02.2019)

Selyuzhenok V., Kondrik D., Kazakov E., Pozdnyakov D.

Westbrook P. E., De Vriend-De Jong W., Van der Wal P., Borman A. H., De Vriend J. P. M.

Received February 05, 2019