Совмещение данных MODIS-Aqua и Sentinel-2: Применение к оптически мелким водам озера Мичиган

Антон Андреевич Коросов, Артем Владимирович Моисеев, Дмитрий Викторович Поздняков, Anton Korosov, Artem Moiseev, Dmitry Pozdnyakov

Аннотация


Разработан инструмент для совмещения данных двух спутниковых датчиков цвета океана (ЦО), один из которых имеет более высокое пространственное разрешение, а другой – более высокое спектральное разрешение. В результате создается изображение имеющее одновременно высокое пространственное и спектральное разрешение. Разработанный алгоритм совмещения данных использует аппарат искусственных нейронных сетей (ИНС), позволяющий устанавливать функциональную зависимость между входными и выходными данными, в качестве которых выступают значения радиационного сигнала, регистрируемого датчиком высокого пространственного разрешения в его спектральных каналах, со значениями радиационного сигнала, регистрируемых датчиком высокого спектрального разрешения в своих спектральных каналах. Эффективность разработанного ИНС алгоритма демонстрируется для озера Мичиган с использованием спектральных данных многоспектрального прибора (MSI) Sentinel2 и спектрорадиометра среднего разрешения (MODIS) MODIS-Aqua. Разработанный инструмент совмещения данных ЦО не зависит от конкретного сочетания датчиков ЦО и может сочетаться с различными алгоритмами восстановления искомых биогеохимических параметров. В случае восстановления параметров качества воды (ПКВ) в оптически мелких водах применение разработанного инструмента совмещения ОК данных особенно эффективно поскольку отражательные характеристики донного покрытия могут иметь высокую пространственную изменчивость. Для восстановления из совмещенных данных ЦО значений ПКВ в оптически мелких водах использовался разработанный нами специальный алгоритм BOREALI-OSW, который позволяет на количественном уровне получать информацию не только по ПКВ, но и характере донного покрытия. Эти возможности продемонстрированы на примере исследований восточного побережья озера Мичиган, в ходе которых была документирована внутригодовая динамика значений ПКВ и выявлена пространственная неоднородность донного субстрата в этой мелководной части водоема.

 


Ключевые слова


совмещение данных многоспектральных датчиков цвета океана; оптически мелкие воды; восстановление параметров качества воды; идентификация типа донного покрытия; озеро Мичиган

Полный текст:

PDF

Литература


Aiazzi B. et al. Context-driven fusion of high spatial and spectral resolution pan- sharpening through multivariate regression of MS+PAN data // IEEE Transactions and Geoscience and Remote Sensing. 2007. 45(10). P. 3230-3239.

Aiazzi B., Aparone L. Twenty-five years of pan-sharpening: a critical review and new developments. Signal and Image Processing for Remote Sensing. Second Ed. Boca Raton: CRC Press. 2012. P. 533-548.

Amro I., Mateos J., Vegfa M., Molina R., Katsaggelos A. K. A survey of classical methods and new trends in panshartpening of multispectral images // Journal of Advances in Signal Processing. 2011. 79. doi:10.1186/1687-6180-2011-79.

Boschetti L. D., Justice C. O., Humber M. L. MODIS-Landsat fusion for large area 30m burned area mapping // Remote Sensing of Environment. 2015. Vol. 161. P. 27-42. doi. 10.1016/j.rse.2015.01.022.

Cakir H. I., Khorram, S. Pixel level fusion of panchromatic and multispectral images based on correspondence analysis // Photogrammetric Engineering and Remote Sensing. 2008. Vol. 74, no. 2. P. 183–192. doi: 10.14358/PERS.74.2.183.

Chapra S. C., Dobson H. F. H. Quantification of the Lake trophic typologies of Nauman (surface quality) and Thienemann (oxygen) with special reference to the Great Lakes // Journal of Great Lakes Research. 1981, Vol. 7, no. 2. P. 182-193. doi: 10.1016/S0380-1330(81)72044-6.

Chavez P. S., Sides S. C., Anderson I. A. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic // Photogrammetric Engineering and Remote Sensing. 1991. Vol. 57, no. 3. P. 295–303.

Choi J., et al. Hybrid pan-sharpening algorithm for high spatial resolution satellite imagery to improve spatial quality // IEEE Geoscience and Remote Sensing Letters. 2013. Vol. 10, no. 3. P. 490–494. doi: 10.1109/LGRS.2012.2210857.

Choi, M., Kim, R. Y., and Kim, M. G. 2004. The curvelet transform for image fusion //International Society for Photogrammetry and Remote Sensing, ISPRS 2004. Т. 35. P. 59-64.

Donlon C., Berruti B., Buongiomo A. et al. The Global monitoring of Environ ment and security (GMES) Sentinel-3 mission // Remote sensing of Environment. 2012. Vol 120. P. 37-57. doi: 10.1016/j.rse.2011.07.024

Duran J., et al. A nonlocal variational model for pan-sharpening image fusion // SIAM Journal on Imaging Sciences. 2014. Vol. 7, issue 2. P. 761–796. doi: 10.1137/130928625.

Gangkofner U. G., Pradhan P. S., Holcomb D. W. Optimizing the high-pass filter addition technique for image fusion // Photogrammetric Engineering and Remote Sensing. 2008. Vol 74, no. 9. P. 1107–1118. doi: 10.14358/PERS.74.9.1107.

Garzelli A., Nencini F. Interband structure modeling for pan-sharpening of very high resolution multispectral images // Information Fusion. 2005. Vol. 6, no. 3. P. 213-224. doi: 10.1016/j.inffus.2004.06.008.

Gillespie T. W., Foody G. M., Rocchini D., Giorgi A. P., Saatchi, S. Measuring and Modelling biodiversity from Space // Progress in Physical Geography. 2008. Vol. 32, no. 2. P. 203-221. doi: 10.1177/0309133308093606.

Haykin S. Neural Networks. A Comprehensive Foundation. Upper Saddle River, NJ: Prentice Hall. 1998.

Hong G., Zhang Y., Mercer B. A wavelet and IHS integration method to fuse high resolution SAR with moderate resolution multispectral images // Photogrammetric Engineering and Remote Sensing. 2009. Vol. 75, no. 10. P. 1213–1223. doi: 10.14358/PERS.75.10.1213.

Jerome J. H, Bukata R. P., Miller J. R. Remote sensing reflectance and its relationship to optical properties of natural water // International Journal of Remote Sensing. 1996. Vol. 17, no. 1. P. 43-52. doi: 10.1080/01431169608949135.

Khan M. M., et al. Indusion: fusion of multispectral and panchromatic images using the induction scaling technique // IEEE Geoscience and Remote Sensing Letters. 2008. Vol. 5, no. 1. P. 98–102. doi: 10.1109/LGRS.2007.909934.

Klonus S. 2008. Comparison of pan-sharpening algorithms for combining radar and multispectral data // XXI ISPRS congress (Beijing, 3–11 July, ISPRS). P. 189–194.

Korosov, A. A., Pozdnyakov, D. V., Shuchman, R. A., Sayers, M., Sawtell, R., Moiseev, A. V. Bio-optical retrieval algorithm for the optically shallow waters of Lake Michigan. I. Model description sensitivity/robustness assessment // Limnologia. 2017. Vol. 3. P. 79-93. doi: 10.17076/lim473.

Korosov, A. A., Pozdnyakov, D. V., Shuchman, R. A., Sayers, M., Sawtell, R., Moiseev, A. V. 2017. Bio-optical retrieval algorithm for the optically shallow waters of Lake Michigan. II. Efficiency Assessment // Limnologia. Vol. 4: P. 79-93. (in press)

Laben C. A., Brower B. V. 2000. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. Patent US 6011875 A [US patent No 6011875 A]. 2000.

Ling Y., Ehlers M., Usery E. L., Madden, M. FFT-enhanced IHS transform method for fusing high-resolution satellite images // ISPRIS Journal of Photogrammetry and Remote Sensing. 2007. Vol. 61, issue 6. P. 381-392. doi: 10.1016/j.isprsjprs.2006.11.002.

Liu J. G. Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details // International Journal of Remote Sensing. 2000. Vol. 21, no. 18. P. 3461–3472. doi: 10.1080/014311600750037499.

Liu J., Liang S. Pan-sharpening using a guided filter // International Journal of

Maritorena S., Morel A., Gentili B. Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo // Limnology and Oceanography. 1994. Vol. 39, issue 7. P. 1689-1703. doi: 10.4319/lo.1994.39.7.1689.

Metwalli, M. R., et al. Efficient pan-sharpening of satellite images with the contourlet transform // International Journal of Remote Sensing. 2014. Vol. 35, issue 5. P. 1979–2002. doi: 10.1080/01431161.2013.873832.

Mida J. L., Scavia D., Fahnenstiel G. L. Long-term and recent changes in southern Lake Michigan water quality with implications for present trophic status // Journal of Great Lakes Research. 2010. Vol. 36 P. 1-8. Doi: 10.1016/j.jglr.2010.03.010.

Mida J. L., Scavia D., Fahnenstiel G. L., Pothoven S. A. Cladophora Reserch and Management in the Great Lakes. In: Proceedings of a Workshop Held at the Great Lakes WATER Institute, University of Wisconsin-Milwaukee, December 8, 2004. GLWI Special Report No. 2005-01.

Morozov, E. A., Korosov A. A., Pozdnyakov D. V., Pettersson L. H., Sychev V. I. A New Area-Specific Bio-Optical Algorithm for the Bay of Biscay and Assessment of Its Potentials for SeaWiFS and MODIS/Aqua Data Merging // International Journal of Remote Sensing. 2010. Vol. 31. P. 6541–6555.

Nalepa T. F., Schloesser D. W. Quagga and Zebra Musssels: Biology, Impacts, and Control. CRC Press: Boca Raton, FL. 2014.312 p.

Nussbaumer H. J. Fast Fourier transform and convolution algorithms. Berlin: Springer-Verlag. 1982. 280 p.

Otazu X., et al. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Transactions on Geoscience and Remote Sensing. 2005. Vol. 43, no. 10. P. 2376–2385. doi: 10.1109/TGRS.2005.856106.

Palubinskas G. Fast, simple, and good pan-sharpening method // Journal of Applied Remote Sensing. 2013. Vol. 7, no. 1. P.073526-1 - 073526-12. doi: 10.1117/1.JRS.7.073526.

Pintore M., Van De Waterbeemd H., Piclin N., Chrétien J. R. Prediction of Oral Bioavailability by Adaptive Fuzzy Partitioning // European Journal of Medical Chemistry. 2003. Vol. 38, no. 4. P. 427–31. doi: 10.1016/S0223-5234(03)00052-7.

Pohl C., van Genderen J. Multisensor image fusion in remote sensing: Concepts, methods and applications // International Journal of Remote Sensing. 1998. Vol. 19, issue 5. P. 823-854. doi: 10.1080/014311698215748.

Pohl C., van Genderen J. Structuring contemporary remote sensing image fusion // International Journal of Image and Data Fusion. 2015. Vol. 6, no. 1. P. 3-21. doi: 0.1080/19479832.2014.998727.

Press W., Teukolsky S., Vettering W., Flannery, B. Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. New York: Cambridge University Press. 1992.Remote Sensing. 2016. Vol. 37, no. 8. P. 1777-1800. doi: 10.1080/01431161.2016.1163749.

Rong K., et al. Pan-sharpening by exploiting sharpness of the spatial structure // International Journal of Remote Sensing. 2014. Vol. 35, issue 8. P. 6662-6673. doi: 10.1080/2150704X.2014.960607.

Shah V. P., Younan N. H., King R. L. An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets // IEEE Transactions of Geoscience and Remote Sensing. 2008. Vol. 46, no. 5. P. 1323–1335. doi: 10.1109/TGRS.2008.916211.

Shahraiyni H. T., Shouraki S. B., Fell F., Schaale M., Fischer J., Tavakoli A., Preusker R., Tajrishy M., Vatandoust M., Hhodaparast H. Application of the Active Learning Method to the Retrieval of Pigment from Spectral Remote Sensing Reflectance Data // International Journal of Remote Sensing. 2009. Vol. 30. P. 1045–65. doi: 10.1080/01431160802448927.

Shuchman R. A., Sayers M. J., Brooks C. N. Mapping and monitoring the extent of submerged aquatic vegetation in the Laurentian Great Lakes with multi-scale satellite remote sensing // Journal of Great Lakes Research. 2013. Vol. 39. P. 78–89. doi: 10.1016/j.jglr.2013.05.006.

Shuchman R., Korosov A., Hatt C., Pozdnyakov D., Means J., Meadows G. Verification and application of a Bio-optical Algorithm for Lake Michigan Using SeaWiFS: a 7-year Inter-annual Analysis // Great Likes Res. 2006. Vol. 32. P. 258–279. doi: 10.3394/0380-1330(2006)32[258:VAAOAB]2.0.CO;2.

Starck J. L., Murtagh F, Candes E. J. Gray and colour image contrast enhancement by the curvelet transform // IEEE Transections on Image Processing. 2003. Vol. 12, no. 6. P. 706-716. doi: 10.1109/TIP.2003.813140.

Tu T. M., Huang P. S., Hung C. L., Chang C. P. 2004. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery // IEEE Geoscience and Remote Sensing Letters. 2004. Vol. 1, no. 4. P. 309–312. doi:10.1109/LGRS.2004.834804.

Vrabel J. Multispectral imagery advanced band sharpening study // Photogrammetric Engineering & Remote Sensing. 2000. Vol. 66, no. 1. P. 73–79.

Zang J. Multi-source remote sensing data fusion: status and trends // International Journal of Image and Data Fusion. 2010. Vol. 1, no. 1. P. 5-24. doi: 10.1080/19479830903561035.

Zang Y. Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images // IEEE Transactions on Geoscience and Remote Sensing. 2009. Vol. 47, no. 11. P. 3834-3842. doi: 10.1109/TGRS.2009.2017737.

Zhang Y. A new merging method and its spectral and spatial effects // International Journal of Remote Sensing. 1999. Vol. 20, no. 10. P. 2003–2014. doi: 10.1080/014311699212317.

Zimmermann H. J. Fuzzy Set Theory. Boston, MA: Kluwer Academic Publishers. 2001.

References in English

Aiazzi B., Alparone L., Baronti S. et al. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Transactions and Geoscience and Remote Sensing.

40 (10). P. 2300–2312.

Aiazzi B., Aparone L. Twenty-five years of pansharpening: a critical review and new developments. Signal and I mage Processing for Remote Sensing. Second Ed. Boca Raton: CRC Press. 2012. P. 533–548.

Amro I., Mateos J., Vegfa M., Molina R., Katsaggelos A. K. A survey of classical methods and new trends in panshartpening of multispectral images. Journal of Advances in Signal Processing. 2011. 79. doi: 10.1186/1687‑6180‑2011‑79

Boschetti L. D., Justice C. O., Humber M. L. MO DISLandsat fusion for large area 30 m burned area mapping. Remote Sensing of Environment. 2015. Vol. 161. P. 27–42. doi: 10.1016/j.rse.2015.01.022

Cakir H. I., Khorram S. Pixel level fusion of panchromatic and multispectral images based on correspondence analysis. Photogrammetric Engineering and Remote Sensing. 2008. Vol. 74, no. 2. P. 183–192. doi: 10.14358/PERS.74.2.183

Chapra S. C., Dobson H. F. H. Quantification of the Lake trophic typologies of N auman (surface quality) and Thienemann (oxygen) with special reference to the G reat Lakes. Journal of Great Lakes Research. 1981. Vol. 7, no. 2. P. 182–193. doi: 10.1016/S0380-1330(81)72044-6

Chavez P. S., Sides S. C., Anderson I. A. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM.and SPOT panchromatic. Photogrammetric Engineering and Remote Sensing. 1991. Vol. 57, no. 3. P. 295–303.

Choi J., Yeom J., Chang A., Byun Y., Kim Y. Hybrid pan-sharpening algorithm for high spatial resolution satellite imagery to improve spatial quality. IEEE Geoscience and Remote Sensing Letters. 2013. Vol. 10, no. 3. P. 490–494. doi: 10.1109/LGRS.2012.2210857

Choi M., Kim R. Y., Kim M. G. The curvelet transform for image fusion. International Society for Photogrammetry and Remote Sensing. ISPRS. 2004. Vol. 35. P. 59–64.

Donlon C., Berruti B., Buongiomo A., Ferreira M.‑H., Femenias P., Frerick J., Goryl P., Klein U., Laur H., Mavrocordatos C., Nieke J., Rebhan H., Seitz B., Stroede J., Sciarra R. The G lobal monitoring of Environment and security (GMES) Sentinel-3 mission. Remote sensing of Environment. 2012. Vol. 120. P. 37–57. doi: 10.1016/j.rse.2011.07.024

Duran J., Buades A., Coll B., Sbert C. A nonlocal variational model for pan-sharpening image fusion. SIAM Journal on Imaging Sciences. 2014. Vol. 7, iss. 2. P. 761–796. doi: 10.1137/130928625

Gangkofner U. G., Pradhan P. S., Holcomb D. W. Optimizing the high-pass filter addition technique for image fusion. Photogrammetric Engineering and Remote Sensing. 2008. Vol. 74, no. 9. P. 1107–1118. doi: 10.14358/PERS.74.9.1107

Garzelli A., Nencini F. Interband structure modeling for pan-sharpening of very high resolution multispectral

images. Information Fusion. 2005. Vol. 6, no. 3. P. 213– 224. doi: 10.1016/j.inffus.2004.06.008

Gillespie T. W., Foody G. M., Rocchini D., Giorgi A. P., Saatchi S. Measuring and M odelling biodiversity from Space. Progress in Physical Geography. 2008. Vol. 32, no. 2. P. 203–221. doi: 10.1177/0309133308093606

Haykin S. Neural Networks. A Comprehensive Foundation. Upper Saddle River, NJ: Prentice Hall. 1998.

Hong G., Zhang Y., Mercer B. A wavelet and I HS integration method to fuse high resolution SAR with moderate resolution multispectral images. Photogrammetric Engineering and Remote Sensing. 2009. Vol. 75, no. 10. P. 1213–1223. doi: 10.14358/PERS.75.10.1213

Jerome J. H., Bukata R. P., Miller J. R. Remote sensing reflectance and its relationship to optical properties of natural water. International Journal of Remote Sensing. 1996. Vol. 17, no. 1. P. 43–52. doi: 10.1080/01431169608949135

Khan M. M., Chanussot J., Condat L., Montanvert A. Indusion: fusion of multispectral and panchromatic images using the induction scaling technique. IEEE Geoscience and Remote Sensing Letters. 2008. Vol. 5, no. 1. P. 98–102. doi: 10.1109/LGRS.2007.909934

Klonus S. Comparison of pan-sharpening algorithms for combining radar and multispectral data. XXI ISPRS congress (Beijing, 3–11 July, ISPRS). 2008. P. 189–194.

Korosov A. A., Pozdnyakov D. V., Shuchman R. A., Sayers M., Sawtell R., Moiseev A. V. Bio-optical retrieval algorithm for the optically shallow waters of Lake Michigan. I. Model description sensitivity/robustness assessment. Transactions of the KarRC of RAS. 2017. No. 3. P. 79–93. doi: 10.17076/lim473

Laben C. A., Brower B. V. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. Patent US 6011875 A [US patent No 6011875 A]. 2000.

Ling Y., Ehlers M., Usery E. L., Madden M. FFT-enhanced IHS transform method for fusing high-resolution satellite images. ISPRIS Journal of Photogrammetry and Remote Sensing. 2007. Vol. 61, iss. 6. P. 381–392. doi: 10.1016/j.isprsjprs.2006.11.002

Liu J. G. Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing. 2000. Vol. 21, no. 18. P. 3461–3472. doi: 10.1080/01431160075003749970

Liu J., Liang S. Pan-sharpening using a guided filter. International Journal of Remote Sensing. 2016. Vol. 37, no. 8. P. 1777–1800. doi: 10.1080/01431161.2016.1163749

Maritorena S., Morel A., Gentili B. Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnology and Oceanography. 1994. Vol. 39, iss. 7. P. 1689–1703. doi: 10.4319/lo.1994.39.7.1689

Metwalli M. R., Nasr A. H., Faragallah O. S., El-Rabaie E.‑S. M., Abbas A. M., Alshebeili S. A., Abd El-Samie F. E. Efficient pan-sharpening of satellite images with the contourlet transform. International Journal of Remote Sensing. 2014. Vol. 35, iss. 5. P. 1979–2002. doi: 10.1080/01431161.2013.873832

Mida J. L., Scavia D., Fahnenstiel G. L. Long-term and recent changes in southern Lake Michigan water quality with implications for present trophic status. Journal of Great Lakes Research. 2010. Vol. 36. P. 1–8. doi: 10.1016/j.jglr.2010.03.010

Mida J. L., Scavia D., Fahnenstiel G. L., Pothoven S. A. Cladophora Reserch and M anagement in the G reat Lakes. In: Proceedings of a Workshop Held at the Great Lakes WATER Institute, University of Wisconsin-

Milwaukee, December 8, 2004. GLWI Special Report N o. 2005–01.

Morozov E. A., Korosov A. A., Pozdnyakov D. V., Pettersson L. H., Sychev V. I. A N ew Area-Specific Bio-Optical Algorithm for the Bay of Biscay and Assessment of I ts Potentials for SeaWiFS and MO DIS/Aqua Data Merging. International Journal of Remote Sensing. 2010. Vol. 31. P. 6541–6555.

Nalepa T. F., Schloesser D. W. Quagga and Zebra Musssels: Biology, Impacts, and Control. CRC Press: Boca Raton, FL. 2014. 312 p.

Nussbaumer H. J. Fast Fourier transform and convolution algorithms. Berlin: Springer-Verlag. 1982. 280 p.

Otazu X., Gonzalez-Audicana M., Fors O., Nunez J. Introduction of sensor spectral response into image fusion

methods. Application to wavelet-based methods. IEEE Transactions on Geoscience and Remote Sensing. 2005. Vol. 43, no. 10. P. 2376–2385. doi: 10.1109/TGRS.2005.856106

Palubinskas G. Fast, simple, and good pan-sharpening method. Journal of Applied Remote Sensing. 2013.

Vol. 7, no. 1. P. 073526–1–073526–12. doi: 10.1117/1.JRS.7.073526

Pintore M., Van De Waterbeemd H., Piclin N., Chretien J. R. Prediction of O ral Bioavailability by Adaptive

Fuzzy Partitioning. European Journal of Medical Chemistry. 2003. Vol. 38, no. 4. P. 427–431. doi: 10.1016/

S0223-5234(03)00052-7

Pohl C., van Genderen J. Multisensor image fusion in remote sensing: Concepts, methods and applications.

International Journal of Remote Sensing. 1998. Vol. 19, iss. 5. P. 823–854. doi: 10.1080/014311698215748

Pohl C., van Genderen J. Structuring contemporary remote sensing image fusion. International Journal of Image and Data Fusion. 2015. Vol. 6, no. 1. P. 3–21. doi: 0.1080/19479832.2014.998727

Press W., Teukolsky S., Vettering W., Flannery B. Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. New York: Cambridge University Press. 1992.

Rong K., WangSh., Yang Sh., Jiao L. Pan-sharpening by exploiting sharpness of the spatial structure. International Journal of Remote Sensing. 2014. Vol. 35, iss. 18. P. 6662–6673. doi: 10.1080/2150704X.2014.960607

Shah V. P., Younan N. H., King R. L. An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Transactions of Geoscience and Remote Sensing. 2008. Vol. 46, no. 5. P. 1323–

doi: 10.1109/TGRS.2008.916211

Shahraiyni H. T., Shouraki S. B., Fell F., Schaale M., Fischer J., Tavakoli A., Preusker R., Tajrishy M., Vatandoust

M., Hhodaparast H. Application of the Active Learning Method to the Retrieval of Pigment from Spectral Remote Sensing Reflectance Data. International Journal of Remote Sensing. 2009. Vol. 30. P. 1045–65. doi: 10.1080/01431160802448927

Shuchman R. A., Sayers M. J., Brooks C. N. Mapping and monitoring the extent of submerged aquatic vegetation in the Laurentian Great Lakes with multi-scale satellite remote sensing. Journal of Great Lakes Research. 2013. Vol. 39. P. 78–89. doi: 10.1016/j.jglr.2013.05.006

Shuchman R., Korosov A., Hatt C., Pozdnyakov D., Means J., Meadows G. Verification and application of a Bio-optical Algorithm for Lake Michigan Using SeaWiFS: a 7‑year Inter-annual Analysis. Great Likes Res. 2006. Vol. 32. P. 258–279. doi: 10.3394/0380-1330(2006)32[258:VAAOAB]2.0.CO;2

Starck J. L., Murtagh F., Candes E. J. Gray and colour image contrast enhancement by the curvelet transform. IEEE Transections on Image Processing. 2003. Vol. 12, no. 6. P. 706–716. doi: 10.1109/TIP.2003.813140

Tu T. M., Huang P. S., Hung C. L., Chang C. P. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery. IEEE Geoscience and Remote Sensing Letters. 2004. Vol. 1, no. 4. P. 309–312. doi: 10.1109/LGRS.2004.834804

Vrabel J. Multispectral imagery advanced band sharpening study. Photogrammetric Engineering & Remote Sensing. 2000. Vol. 66, no. 1. P. 73–79.

Zang J. Multi-source remote sensing data fusion: status and trends. International Journal of Image and Data Fusion. 2010. Vol. 1, no. 1. P. 5–24. doi: 10.1080/19479830903561035

Zang Y. Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing. 2009. Vol. 47, no. 11. P. 3834–3842. doi: 10.1109/TGRS.2009.2017737

Zhang Y. A new merging method and its spectral and spatial effects. International Journal of Remote Sensing. 1999. Vol. 20, no. 10. P. 2003–2014. doi: 10.1080/014311699212317

Zimmermann H. J. Fuzzy Set Theory. Boston, MA: Kluwer Academic Publishers, 2001.




DOI: http://dx.doi.org/10.17076/lim692

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2018