СПУТНИКОВОЕ ДОКАЗАТЕЛЬСТВО УВЕЛИЧЕНИЯ КОНЦЕНТРАЦИИ СО2 В АТМОСФЕРНОМ СТОЛБЕ НАД ОБЛАСТЬЮ ЦВЕТЕНИЯ E. HUXLEYI

Дмитрий Вячеславович Кондрик, Эдуард Эдуардович Казаков, Дмитрий Викторович Поздняков, Ола Матиас Йоханнессен, Dmitry Kondrik, Eduard Kazakov, Dmitry Pozdnyakov, Ola Johannessen

Аннотация


Известно, что водоросли Emiliania huxleyi повышают парциальное давление CO2в окружающей их воде, (pCO2)w. Таким образом, над областями цветения может увеличиваться средняя по атмосферному столбу мольная доля диоксида углерода (XCO2) сухого воздуха. Значения (XCO2) количественно еще не определялись в масштабах бассейна. Здесь мы сообщаем о спутниковом исследовании влияния цветений E. huxleyi на значения XCO2 над Черным морем, основанном на данных Orbiting Carbon Observatory (OCO-2). Установлено, что одновременно со значительным уве-
личением (pCO2)w в атмосферном столбе над цветением наблюдается увеличение XCO2 в диапазоне от ~ 1 до почти 2 ppmv, что по величине сравнимо с планетарным годовым увеличением XCO2. Показано, что значения (pCO2)w в Черном море и в субполярных и полярных морях тесно сопоставимы. Это убедительно свидетельствует о том, что цветения E. huxleyi в значительной степени ослабляют способность океана поглощать углерод на значительных протяженностях, и это может иметь значение для глобальной климатологии и морской биогеохимии.

Ключевые слова


Черное море; цветения Emiliania huxleyi; парциальное дав- ление СО2 в воде; спутниковое дистанционное зондирование; данные ОСО-2; воз- растание содержания СО2 в атмосферном столбе над цветениями Emiliania huxleyi.

Полный текст:

PDF (English)

Литература


Balch W. M., Bates N. R., Lam P. J., Twining B. S., Rosengard S. Z., Bowler B. C., and Drapeau D. T. Factors regulating the Great Calcite Belt in the Southern Ocean, and its biogeochemical significance // Global Biogeochemical Cycles. 2016. Vol. 30, no. 8. P. 1124–1144. doi:10.1002/2016GB005414.

Brown C. W., and Yoder J. A. Coccolithophorid Blooms in the Global Ocean // Journal of Geophysical Research. 1994. Vol. 99. P. 7467–7482. doi:10.1029/93JC02156.

Cokacar T., Kubilay N., and Oguz T. Structure of Emiliania huxleyi blooms in the Black Sea surface waters as detected by SeaWiFS imagery // Geophysical Research Letters. 2001. Vol. 28, no. 24. P. 4607-4610. doi:10.1029/2001GL013770.

Crisp D. Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2) // Proceedings of SPIE. Earth Observing Systems XX, 960702 (8 September 2015). 2015. Vol. 9607. doi:10.1117/12.2187291.

Dlugokencky E. Annual Mean Carbon Dioxide Data // Earth System Research Laboratory. National Oceanic & Atmospheric Administration. 2016.

Garcia H. E., Locarnini R. A., Boyer T. P., Antonov J. I., Baranova O. K., Zweng M. M., Reagan J. R., Johnson D. R. World Ocean Atlas 2013, Vol. 4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate) / Eds. S. Levitus, A. Mishonov, Technical Eds. NOAA Atlas NESDIS 76. 2013.

Iglesias-Rodrigues M. D., Brown C. W., Doney S. C., Kleypas J., Kolber D., Kolber Z., Hayes P. K., and Falkowski P. G. Representing Key Phytoplankton Functional Groups in Ocean Carbon Cycle Models: Coccolithophorids // Global Biogeochemical Cycles. 2002. Vol. 16, no. 4. P. 47-1-47-20. doi:10.1029/2001GB001454.

IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. / Eds. Core Writing Team, R. K. Pachauri, L. A. Meyer. IPCC. Geneva, Switzerlan. 2014. P. 151.

Key R. M., Olsen A., van Heuven S., Lauvset S. K., Velo A., Lin X., Schirnick C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F. and Suzuki, T. Global Ocean Data Analysis Project, Version 2 (GLODAP v2). 2015. URL: http://cdiac.ornl.gov/oceans/GLODAPv2/. doi:10.3334/CDIAC/OTG. NDP093_GLODAPv2

Khoruzhjy D. S., Kondratyev S. I, Medvedev E. V., Shutov S. A. Dinamika parcial'nogo davleniya uglekislogo gaza i koncentracii rastvorennogo kisloroda v shel'fovyh vodah yuzhnogo berega kryma v 2009 - 2010 gg [Dynamics of the Carbon Dioxide Partial Pressure in the Southern Crimea Shelf Zone in 2009-2010] // Ekologicheskaya bezopasnost' pribrezhnoj i shel'fovoj zon i kompleksnoe ispol'zovanie resursov shel'fa [Journal of Ecological Safety of the Coastal and Shelf zones and Comprehensive Exploitation of the Shelf Resources]. 2010. Vol. 21. P. 136-145.

Kondrik D., Kazakov E., and Pozdnyakov D. A Synthetic Satellite Dataset of the Spatio-Temporal Distributions of Emiliania huxleyi Blooms and Their Impact on Arctic and Sub-Arctic Marine Environments (1998-2016) // Earth System Science Data 2019 Vol. 11. P. 119-128. doi:10.5194/essd-11-119-2019.

Kondrik D. V., Pozdnyakov D. V., Johannessen O. M. Satellite evidence that E. huxleyi phytoplankton blooms weaken marine carbon sinks // Geophysical Research Letters. 2018. Vol. 45, no. 2. P. 846-854. doi: 10.1002/2017GL076240

Kondrik D. V., Pozdnyakov D. V., and Pettersson L. H. Particulate inorganic carbon production within E. huxleyi blooms in subpolar and polar seas: A satellite time series study (1998–2013) // International Journal of Remote Sensing. 2017. Vol. 38, no. 22. P. 6179–6205. doi:10.1080/ 01431161.2017.1350304.

Konovalov S. K., Kondratyev S. I., Khoruzhiy D. S., Medvedev E. V., and Moiseenko O. G. Obshhij neorganicheskij uglerod, karbonatnaja sistema i potoki uglekislogo gaza v pribrezhnoj zone juzhnogo berega Kryma: monitoring, harakteristika, dinamika. [Total Inorganic Carbon, Carbonate System and Fluxes of Carbon Dioxide in the Crimean Shelf Zone: Monitoring, Characterization, Dynamics]. In Monitoring pribrezhnoj zony na Chernomorskom jeksperimental'nom podsputnikovom poligone [Monitoring of the coastal zone in the Black Sea experimental sub-satellite testing area] / Eds V. A. Ivanov, and V. A. Dulov. Sebastopol: NAS of Ukraine, Marine Hydrophysical Institute, 2014. P. 335-372.

Monchev S., Gotsis O., Pagou K., and Krastev A. Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuarine, Coastal and Shelf Science. 2001. Vol. 53, no. 3. P. 281-295. doi:10.1006/ecss.2001.0767.

Moore T., Dowel M. D., and Franz B. A. Detection of coccolithophore blooms in ocean color imagery: A generalized approach for use with multiple sensors // Remote Sensing of Environment, 2012. Vol. 117. P. 249-263. doi:10.1016/j.rse.2011.10.001.

Morozov E., Pozdnyakov D., Smyth T., Sychev V., and Grassl H. Space-borne study of seasonal, multi-year, and decadal phytoplankton dynamics in the Bay of Biscay // International Journal of Remote Sensing. 2013. Vol. 34, no. 4. P. 1297-1331. doi: 10.1080/01431161.2012.718462

Oguz T., and Merico A. Factors controlling the summer Emiliania huxleyi bloom in the Black Sea: A modeling study // Journal of Marine Systems. 2006. Vol. 59, no. 3-4. P. 173-188. doi:10.1016/j.jmarsys.2005.08.002.

Olsen A., Key R. M., van Heuven S., Lauvset S. K., Velo A., Lin X.,

Schirnick C., et al. The Global Ocean Data Analysis Project Version 2 (GLODAPv2) – an Internally Consistent Data Product for the World Ocean // Earth System Science Data. 2016. Vol. 8, no. 2. P. 297–323. doi:10.5194/essd-8-297-2016.

Özsoy E., and Ünlüata Ü. Oceanography of the Black Sea: A review of some recent results // Earth-Science Reviews. 1997. Vol. 42, no. 4. P. 231-272. doi:10.1016/S0012-8252(97)81859-4.

Robertson J. E., Robinson C., Turner D. R., Holligan P., Watson A. J., Boyd P., Fernandez E., and Finch M. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991 // Deep Sea Research. 1994. Vol. 41, no. 2. P. 297–314. doi:10.1016/0967.

Shutler J. D., Land P. E., Brown C. W., Findlay H. S., Donlon C. J., Medland M., Snooke R., and Blackford J. C. Coccolithophore Surface Distributions in the North Atlantic and Their Modulation of the Air-Sea Flux of CO2 from 10 Years of Satellite Earth Observation Data // Biogeosciences. 2013. Vol. 10. P. 2699–2709. doi:10.5194/bg-10-2699-2013.

Smyth T. J., Tyrrell T., and Tarrant B. Time Series of Coccolithophore Activity in the Barents Sea from Twenty Years of Satellite Imagery // Geophysical Research Letters. 2004. Vol. 31. doi:10.1029/2004GL019735.

Tyrrell T., and Merico A. Emiliania huxleyi: bloom observations and the conditions that induce them. In Coccolithophores: from molecular processes to global impact / Eds. H. R. Thierstein and J. R.Young., Berlin: Springer, 2004. P. 75-97. doi:10.1007/978-3-662-06278-4_4.

Vinogradov M. E., Shushkina E. A., Mikaelyan A. S., and Nezlin N. P. Temporal (Seasonal and Interannual) Changes of Ecosystem of the Open Waters of the Black Sea. In Environmental Degradation of the Black Sea: Challenges and Remedies / Eds. S. T. Beşiktepe, Ü. Ünlüata, and A. S. Bologa. NATO Science Partnership Subseries: 2 (56). Dordrecht: Springer Netherlands, 1999. P. 109-129. doi:10.1007/978-94-011-4568-8_8.

Wu L., Hasekamp, O., Hu, H., Landgraf, J., Butz, A., aan de Brugh, J., Aben, I., Pollard, D. F., Griffith, D. W. T., Feist, D. G., Koshelev, D., Hase, F., Toon, G. C., Ohyama, H., Morino, I., Notholt, J., Shiomi, K., Iraci, L., Schneider, M., de Mazière, M., Sussmann, R., Kivi, R., Warneke, T., Goo, T.-Y., and Té, Y.. Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements // Atmos. Meas. Tech. 2018. Vol. 11. P. 3111-3130. doi: 10.5194/amt-11-3111-2018.




DOI: http://dx.doi.org/10.17076/lim1107

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019