Труды Карельского научного центра РАН № 9. 2015. С. 3–9 **DOI: 10.17076/lim72**

ГИДРОФИЗИКА

УДК 556.555.4 (470.22)

ТЕПЛОПОТОК НА ГРАНИЦЕ ВОДА – ДОННЫЕ ОТЛОЖЕНИЯ В НЕБОЛЬШОМ ОЗЕРЕ

Г. Г. Гавриленко, Г. Э. Здоровеннова, Р. Э. Здоровеннов, Н. И. Пальшин, А. В. Митрохов, А. Ю. Тержевик

Институт водных проблем Севера Карельского научного центра РАН

Приводятся результаты многолетних (2007–2013 гг.) круглогодичных непрерывных измерений температуры придонного слоя воды и верхнего слоя донных отложений небольшого мелководного озера. Описывается методика измерений с использованием специальной придонной несущей конструкции. Использование высокочувствительного оборудования в продолжительных измерениях температуры воды с малым шагом по времени (одна минута) позволило получить принципиально новую информацию о переносе тепла вблизи границы водной массы озера с донными отложениями в течение года, включая периоды образования и разрушения ледового покрова.

Ключевые слова: мелководное озеро; термический режим; тепловой поток; донные отложения.

G. G. Gavrilenko, G. E. Zdorovennova, R. E. Zdorovennov, N. I. Palshin, A. V. Mitrokhov, A. Yu. Terzhevik. HEAT FLUX AT THE WATER-SEDIMENT INTERFACE IN A SHALLOW LAKE

The results of long-term (2007–2013) year-round continuous temperature measurements in the near-bottom water and the top sediment layer of a small shallow lake are reported. The measurement technique using a bottom-mounted platform is described. Owing to the highly sensitive equipment used in the long-term water temperature measurements with a small time step (one minute) we managed to obtain fundamentally new information on heat transfer through the water-sediment interface throughout the year, including the periods of ice cover formation and destruction.

K e y w o r d s: shallow lake; thermal regime; heat flux; bottom sediment.

Тепловое взаимодействие водной массы мелководного озера с донными отложениями

существенно меняется в течение года. На этапе весенне-летнего нагревания происходит Характеристики приборов с указанием измеряемых параметров, диапазона измерений, точности и разрешающей способности

Прибор	Параметр	Диапазон	Точность	Разрешение
TR-1060	Температура	−5+35 °C	±0,002 °C	<0,00005 °C
TDR-2050	Давление	0100 дБ	±0,05 %	<0,001 %
	Температура	–5…+35 °C	±0,002 °C	<0,00005 °C

Рис. 1. А – Вендюрская группа озер, водосбор оз. Вендюрского. Б – батиметрия оз. Вендюрского. Станция измерений – белый кружок

Рис. 2. Схема измерительной станции: А – в период с июля 2007 г. по май 2008 г., Б – с июня 2008 г. 1 – несущая конструкция, 2 – датчики давления и температуры, 3 – кабель, 4 – поплавок

накопление тепла верхним слоем донных отложений, на этапе осеннего охлаждения и в период ледостава тепло переходит из донных отложений в воду. Наиболее активное выхолаживание донных отложений мелководных озер происходит на этапе осеннего охлаждения и непосредственно перед ледоставом. Измерения температуры на небольших озерах показывают, что величина теплового потока вблизи границы вода-дно в предледоставный период и в начале зимы достигает 5–10, к концу зимы снижается до 0,5–1 Вт.м⁻² [Likens, Johnson, 1969; Bengtsson, Svensson, 1996; Kirillin et al., 2009]. Определенная на основании натурных измерений, величина теплового потока на границе вода-дно используется в моделях, воспроизводящих тепловой бюджет водной массы водоема [Fang, Stefan, 1998], теплоактивного слоя донных отложений [Golosov, Kirillin, 2010]. Сложность параметризации величины теплового потока через границу вода-дно обусловлена как зависимостью его от термофизических свойств грунта [Malm et al., 1996; Ryanzhin, 1997], так и значительной изменчивостью во

Рис. 3. Измерительная конструкция после извлечения из озера в октябре 2011 г. Граница вода – донные отложения хорошо определяется по наличию темного налета на поверхности датчиков

времени и по пространству [Fang, Stefan, 1996; Malm et al., 1997; Zdorovennova, 2009]. В настоящей работе приведены результаты многолетних измерений температуры и оценок теплопотока вблизи границы вода-дно в небольшом мелководном озере, описана методика измерений с использованием современного высокочувствительного оборудования.

Объект исследования – мезотрофное озеро Вендюрское, расположенное в южной части Карелии (62°10'-62°20'N, 33°10'-33°20'E). Площадь зеркала озера 10,4 км², объем вод ~5,5.10⁷ м³, средняя глубина 5,3 м, максимальная 13,4 м, площадь водосборного бассейна 82,8 км² (рис. 1). В озеро впадает р. Риндозерка и несколько небольших ручьев, вытекает р. Кулапдеги, однако объем их стока невелик. Сток с собственного водосбора озера и атмосферные осадки оказывают определяющее влияние на изменения объема озерных вод в течение года. Коэффициент водообмена озера равен 0,4 год-1. Прозрачность воды по диску Секки 3,0 ± 0,5 м. Донные отложения представляют собой песок на мелководье (на глубинах не более 2-3 м) и коричневые и темно-коричневые илы в глубоководной части озера [Литинская, Поляков, 1975].

В период с июля 2007 г. по октябрь 2013 г. на озере Вендюрском проводились измерения температуры придонной воды и верхнего слоя илов с высоким разрешением по пространству и времени. В центральной глубоководной части

озера на дне на глубине около 11,3 м находилась придонная платформа, оснащенная высокочувствительными термодатчиками и датчиками давления производства канадской фирмы «RBR Ltd» (см. рис. 1, 2; табл.). Ежегодно в конце мая - начале июня и в середине октября платформа извлекалась из озера на 2-5 суток для снятия данных, калибровки и перезарядки датчиков, после чего помещалась на прежнее место. Местоположение станции определялось с помощью GPS с точностью ±20 м по горизонтали. Датчики размещались на несущей конструкции таким образом, что часть их оставалась в придонном слое воды, а другая часть попадала в верхний слой донных отложений. Такое взаимное расположение датчиков позволило в дальнейшем с высокой степенью точности оценить тепловой поток вблизи границы вода-дно, а также проследить его изменение в течение года на масштабах от минут и часов до дней и месяцев. Шаг измерений составлял одну минуту. Логгеры накапливали большой объем информации (за «зимнюю» постановку - более 2,7 млн, за «летнюю» ~2 млн отсчетов). Данные обрабатывались с использованием пакетов Excel и SciLab.

За время измерений было испытано несколько модификаций измерительной платформы. В период с июля 2007 г. по май 2008 г. датчики крепились к сторонам квадратной несущей конструкции с длиной стороны около 60 см и высотой около 20 см (см. рис. 2, А). Однако такое

размещение датчиков по ряду причин было признано неудачным, и начиная с июня 2008 г. измерительная станция имела вид, схематически изображенный на рис. 2, Б. Десять датчиков были жестко скреплены с вертикальным сдвигом в два см друг относительно друга между двумя металлическими пластинами, соединенными с треногой металлическим прутом. Вся конструкция крепилась к тросу, находящемуся в натянутом состоянии благодаря шару с положительной плавучестью, который располагался на глубине около 2 м от поверхности озера. Таким образом, вероятность того, что датчики в момент постановки измерительной станции в озеро примут вертикальное положение, была достаточно высока. На фотографиях станции, сделанных после извлечения ее из озера, хорошо прослеживается граница вода-ил: датчики, находящиеся в воде, существенно обрастают и покрываются темнокоричневым налетом, в то время как датчики, находящиеся в иле, остаются чистыми (рис. 3).

По данным термодатчиков были оценены потоки тепла вблизи границы вода-дно, которые рассчитывались градиентным методом по формуле:

$$Q_{bw} = -\lambda \frac{\partial T}{\partial z},$$

где Q_{bw} – теплопоток вблизи границы водадно, Вт·м⁻²; λ – коэффициент молекулярной теплопроводности воды (при 0 °С и атмосферном давлении 0,56 Вт·м⁻¹°С⁻¹); dT/dz – градиент температуры.

Озеро Вендюрское при открытой воде находится в состоянии слабой термической стратификации, периодически сменяющейся гомотермией, его донные отложения активно накапливают тепло, которое отдают в водную толщу зимой. Этим обусловлен хорошо выраженный годовой ход температуры придонного слоя воды и верхнего слоя донных отложений озера (рис. 4, А). Годовой минимум температуры на границе вода – донные отложения в центральной глубоководной части озера (0,5–1 °C) наблюдается непосредственно перед ледоставом, годовой максимум (16–18 °C) – в конце этапа летнего нагревания озера, годовая амплитуда придонной температуры достигает 17 °C.

В предледоставный период тепловой поток направлен из донных отложений в воду (положительные значения потока на рис. 4, Б). В глубоководной части озера максимальные значения теплопотока наблюдаются в течение нескольких дней перед замерзанием озера и достигают 10–15 Вт·м⁻². С появлением сплошного ледового покрова значения теплопотока вблизи границы вода-дно резко уменьшаются до 2-4 Вт·м⁻², затем в течение месяца продолжают постепенно уменьшаться до 1-2 Вт·м-2, в дальнейшем в течение зимы не превышают 1 Вт·м⁻². При очищении озера ото льда происходит полное перемешивание его водной толщи от поверхности до дна. При этом в течение нескольких часов наблюдается резкое падение температуры на границе вода-дно на 0,5-1 °С (черные стрелки на рис. 4, А). Величина теплопотока в этот момент резко возрастает до 5–10 Вт·м⁻² (черные стрелки на рис. 4, Б). Однако в течение нескольких следующих дней по мере роста температуры придонной воды величина теплопотока уменьшается до нуля, и он меняет направление: на этапе летнего нагревания тепло переходит из водной толщи в донные отложения (отрицательные значения теплопотока на рис. 4, Б). Летом водная толща озера периодически полностью перемешивается, в такие моменты скачкообразно повышается температура придонного слоя центральной глубоководной котловины озера. Величина теплопотока, направленного из воды в донные отложения, в июне-июле составляет 5-15 Вт·м⁻². Годовой максимум температуры придонного слоя (пунктирные стрелки на рис. 4, А) достигается в конце июля – начале августа. Величина теплопотока, направленного из воды в донные отложения, также достигает максимума и может превышать 20 Вт·м-2 (пунктирные стрелки на рис. 4, Б). На этапе осеннего охлаждения озера по мере понижения температуры воды величина теплопотока, направленного в донные отложения, постепенно уменьшается до нуля. В годы исследований теплопоток менял знак в середине сентября, затем его величина постепенно увеличивалась, достигая максимума перед замерзанием озера.

Непрерывные измерения с небольшим шагом по времени в течение года позволяют прослеживать ряд интересных явлений, таких, например, как изменение направления теплового потока через границу вода – донные отложения, которое продолжается всего несколько часов. Отследить это явление, проводя, допустим, вертикальные зондирования с дискретностью в несколько дней и даже часов, не представляется возможным. На рис. 5 в качестве примера приведено изменение температуры (см. рис. 5, А) и теплового потока (см. рис. 5, Б) в течение 18-19 сентября 2011 г. в верхнем 12-см слое донных отложений и 6-см слое придонной воды в центральной глубоководной части озера Вендюрского.

Изменение направления теплового потока в верхнем 6-см слое донных отложений произошло 19 сентября около 3 ч, в слое

Рис. 4. Температура (А) и теплопоток (Б) вблизи границы вода-дно на измерительной станции в период с октября 2007 г. по октябрь 2012 г. Осреднение исходных данных по 3 ч

Рис. 5. Изменение температуры (А) и теплопотока (Б) 18–19 сентября 2011 г. в придонном слое воды и верхнем слое донных отложений на измерительной станции

6–10 см – около 10 ч. Величина теплопотока в слое 10–12 см на протяжении 19 сентября уменьшилась в два раза, однако направление его не изменилось. То есть верхний 10-см слой донных отложений начал терять тепло, накопленное на этапе летнего нагревания озера, в то время как нижележащие слои илов продолжали получать тепло, поскольку их температура была ниже температуры вышележащих слоев.

Таким образом, в ходе исследований отработаны методы измерения температуры верхнего слоя донных отложений и придонного слоя воды. Была разработана конструкция измерительной придонной платформы для длительных автономных измерений температуры вблизи границы вода-дно (патент на полезную модель №153787 «Автономное устройство для измерения профиля температуры в придонных слоях воды и грунта», зарегистрировано в Государственном реестре полезных моделей Российской Федерации 7 июля 2015 г., авторы Митрохов А. В., Пальшин Н. И., патентообладатель ИВПС КарНЦ РАН). Использование высокочувствительного оборудования в продолжительных измерениях температуры воды с малым шагом по времени (одна минута) позволило получить принципиально новую информацию о переносе тепла вблизи границы водной массы озера с донными отложениями в течение года. Полученная в ходе более чем пятилетних непрерывных измерений информация позволяет судить о межгодовой, сезонной, синоптической и мелкомасштабной изменчивости температуры и теплового потока вблизи границы вода донные отложения, включая периоды образования и разрушения ледового покрова.

Авторы глубоко признательны анонимным рецензентам за ценные советы и рекомендации.

Литература

Литинская К. Д., Поляков Ю. К. Озера Вендюрской группы – Урос, Риндозеро, Вендюрское // Водные ресурсы Карелии и их использование. Петрозаводск: Карельский филиал АН СССР, 1975. С. 57–66.

Bengtsson L., Svensson T. Thermal regime of icecovered Swedish lakes // Nordic Hydrology. 1996. Vol. 27. P. 39–56.

References

Litinskaya K. D., Polyakov Yu. K. Ozera Vendyurskoi gruppy – Uros, Rindozero, Vendyurskoe [Lakes of Vendyury group – Uros, Rindozero, and Vendyurskoe]. Vodnye resursy Karelii i ikh ispol'zovanie [Water resources of Karelia and their use]. Petrozavodsk: Karel'skii filial AN SSSR, 1975. P. 57–66.

Bengtsson L., Svensson T. Thermal regime of icecovered Swedish lakes. *Nordic Hydrology.* 1996. Vol. 27. P. 39–56.

Fang X., Stefan H. G. Dynamics of heat exchange between sediment and water in a lake. *Water Resources Research*. 1996. Vol. 32 (6). P. 1719–1727.

Fang X., Stefan H. G. Temperature variability in lake sediments. *Water Resources Research*. 1998. Vol. 34 (4). P. 717–729.

Golosov S., Kirillin G. A parameterized model of heat storage by lake sediments. *Environmental Modelling & Software.* 2010. Vol. 25. P. 793–801.

Kirillin G., Engelhardt C., Golosov S., Hintze T. Basin-scale internal waves in the bottom boundary layer *Fang X., Stefan H. G.* Dynamics of heat exchange between sediment and water in a lake // Water Resources Research. 1996. Vol. 32 (6). P. 1719–1727.

Fang X., Stefan H. G. Temperature variability in lake sediments // Water Resources Research. 1998. Vol. 34 (4). P. 717–729.

Golosov S., Kirillin G. A parameterized model of heat storage by lake sediments // Environmental Modelling & Software. 2010. Vol. 25. P. 793–801.

Kirillin G., Engelhardt C., Golosov S., Hintze T. Basinscale internal waves in the bottom boundary layer of ice-covered Lake Müggelsee, Germany // Aquat. Ecol. 2009. Vol. 43 (3). P. 641–651.

Likens G. E., Johnson N. M. Measurement and analysis of the annual heat budget for the sediments in two Wisconsin lakes // Limnol. Oceanogr. 1969. Vol. 14 (1). P. 115–135.

Malm J., Terzhevik A., Bengtsson L. et al. A field study of Thermo- and Hydrodynamics in three Small Karelian Lakes during winter 1994/1995. Department of Water Resources Engineering. Institute of Technology. University of Lund, 1996. No 3197. 220 p.

Malm J., Terzhevik A., Bengtsson L. et al. Temperature and Hydrodynamics in Lake Vendurskoe during Winter 1995/1996. Department of Water Resources Engineering, Institute of Technology. University of Lund, 1997. No 3213. 203 p.

Ryanzhin S. Thermophysical Properties of lake sediments and water-sediments heat interaction. Department of Water Resources Engineering, Institute of Technology, Lund University, Lund, Sweden. 1997. Tech. Rep. 3214.

Zdorovennova G. E. Spatial and temporal variations of the water-sediment thermal structure in shallow ice-covered Lake Vendyurskoe (Northwestern Russia) // Aquatic Ecology. 2009. Vol. 43 (3). P. 629–639.

Поступила в редакцию 06.02.2015

of ice-covered Lake Müggelsee, Germany. *Aquat. Ecol.* 2009. Vol. 43 (3). P. 641–651.

Likens G. E., Johnson N. M. Measurement and analysis of the annual heat budget for the sediments in two Wisconsin lakes. *Limnol. Oceanogr.* 1969. Vol. 14 (1). P. 115–135.

Malm J., Terzhevik A., Bengtsson L., Boyarinov P., Glinsky A., Palshin N., Petrov M. A field study of Thermoand Hydrodynamics in three Small Karelian Lakes during winter 1994/1995. Department of Water Resources Engineering. Institute of Technology. University of Lund, 1996. No 3197. 220 p.

Malm J., Terzhevik A., Bengtsson L., Boyarinov P., Glinsky A., Palshin N., Petrov M. Temperature and Hydrodynamics in Lake Vendurskoe during Winter 1995/1996. Department of Water Resources Engineering, Institute of Technology. University of Lund, 1997. No 3213. 203 p.

Ryanzhin S. Thermophysical Properties of lake sediments and water-sediments heat interaction. Department of Water Resources Engineering, Institute of

Technology, Lund University, Lund, Sweden. 1997. Tech. Rep. 3214.

Zdorovennova G. E. Spatial and temporal variations of the water-sediment thermal structure in shallow ice-covered Lake Vendyurskoe (Northwestern Russia). *Aquatic Ecology*. 2009. Vol. 43 (3). P. 629–639.

Received February 6, 2015

Гавриленко Галина Геннадиевна

и. о. младшего научного сотрудника лаборатории гидрофизики Институт водных проблем Севера Карельского научного центра РАН пр. А. Невского, 50, Петрозаводск, Республика Карелия, Россия, 185030 эл. почта: south.sun.cr@gmail.com тел.: 89602115561

СВЕДЕНИЯ ОБ АВТОРАХ:

Здоровеннова Галина Эдуардовна

старший научный сотрудник лаборатории гидрофизики, к. г. н. Институт водных проблем Севера Карельского научного центра РАН пр. А. Невского, 50, Петрозаводск, Республика Карелия, Россия, 185030 эл. почта: zdorovennova@gmail.com тел.: 89116660369

Здоровеннов Роман Эдуардович

старший научный сотрудник лаборатории гидрофизики, к. г. н. Институт водных проблем Севера Карельского научного центра РАН пр. А. Невского, 50, Петрозаводск, Республика Карелия, Россия, 185030 эл. почта: romga74@gmail.com тел.: 89212209438

Пальшин Николай Иннокентьевич

старший научный сотрудник лаборатории гидрофизики, к. г. н. Институт водных проблем Севера Карельского научного центра РАН пр. А. Невского, 50, Петрозаводск, Республика Карелия, Россия, 185030 эл. почта: npalshin@mail.ru

Митрохов Андрей Васильевич

главный гидробиолог лаборатории гидрофизики Институт водных проблем Севера Карельского научного центра РАН пр. А. Невского, 50, Петрозаводск, Республика Карелия, Россия, 185030 эл. почта: romga74@gmail.com

Тержевик Аркадий Юрьевич

зав. лабораторией гидрофизики, к. т. н. Институт водных проблем Севера Карельского научного центра РАН пр. А. Невского, 50, Петрозаводск, Республика Карелия, Россия, 185030 эл. почта: ark1948@list.ru

CONTRIBUTORS:

Gavrilenko, Galina

Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences 50 A. Nevsky St., 185030 Petrozavodsk, Karelia, Russia e-mail: south.sun.cr@gmail.com tel.: 89602115561

Zdorovennova, Galina

Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences 50 A. Nevsky St., 185030 Petrozavodsk, Karelia, Russia e-mail: zdorovennova@gmail.com tel.: 89116660369

Zdorovennov, Roman

Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences 50 A. Nevsky St., 185030 Petrozavodsk, Karelia, Russia e-mail: romga74@gmail.com tel.: 89212209438

Palshin, Nikolai

Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences 50 A. Nevsky St., 185030 Petrozavodsk, Karelia, Russia e-mail: npalshin@mail.ru

Mitrokhov, Andrey

Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences 50 A. Nevsky St., 185030 Petrozavodsk, Karelia, Russia e-mail: romga74@gmail.com

Terzhevik, Arkady

Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences 50 A. Nevsky St., 185030 Petrozavodsk, Karelia, Russia e-mail: ark1948@list.ru