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Subsumed under the category of ocean colour (oC) data fusion tools, a new approach is 
developed to efficiently use the merits of two oC satellite sensors differing in their spatial 
and spectral resolution characteristics. The tool permits to combine high spectral but low-
er spatial resolution optical data from one satellite sensor with higher spatial resolution but 
lower spectral resolution data from the other one into an image possessing simultaneously 
both high spectral and high spatial resolution qualities. The developed algorithm employs 
the artificial intelligence tool: emulated/artificial neuron networks (Anns). The developed 
Ann algorithm performance and efficiency are demonstrated for Lake michigan. The fu-
sion was effected making use of multiband data from Sentinel-2 multispectral instrument 
(mSi) and moDiS-Aqua moderate Resolution imaging Spectroradiometer (moDiS) sen-
sors. in this version moDiS-Aqua sensor is chosen as an analog of the Sentinel 3 oLCi, 
whose spectrometric and atmospheric corrected data are yet unavailable. The multi-
sensor (mS) optical-optical fusion results have persuasively demonstrated the efficiency 
of the approach and its applicability to studies of natural water bodies of different optical 
complexity. it can be utilized in combination with any biogeochemical retrieval algorithms. 
in the case of retrieving water quality parameters (WQP) in optically shallow aquatic en-
vironments, the employment of the fusion tool developed is particularly promising as 
the bottom reflectance properties are frequently highly heterogeneous. indeed, in such 
cases, remote sensing optical data acquired at simultaneously high spatial and spectral 
resolution are certainly more advantageous as compared to those acquired separately by 
two different sensors operating either at high spatial (but low spectral) or high spectral 
(but low spatial) resolution. For the retrieval of WQP in optically shallow waters (oSW) 
a special algorithm called Biooptical Retrieval Algorithm (BoREALi) – oSW was applied 
to study the eastern coastal zone of Lake michigan. The application of both the oC fu-
sion tool and our BoREALi-oSW algorithm permitted to document both interannual dy-
namics in WQPs as well as bottom substrate spatial heterogeneity in the target oSW area 
of Lake michigan.

K e y w o r d s: fusion of multi-sensor ocean colour remote sensing data; optically shallow 
waters; retrieval of water quality parameters; bottom cover identification; Lake michigan.
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1. Introduction

Known as a process of combining two or more 
different images into a single one, image fusion is 
intended to generate a new image carrying refined/
improved information sought for by researchers.

According to the needs of the latter, image fu-
sion is performed at three processing levels, viz., 
pixel, feature, and decision levels [Pohl and van 
genderen, 1998].

High-level fusion, i. e. feature level and decision 
level fusion is a multi-source data fusion that em-
ploys certain combinations of data sources of vari-
ous nature being dictated by specific aims. Feature 
level fusion extracts various features (e. g. texture 
parameters) from different data sources to further 
combine them into one or more feature maps.

methods of decision level fusion encompass 
voting, statistical and fuzzy logic-based me-
thods. in high-level fusion, optical, synthetic ap-
erture radar (SAR), and light detection and rang-
ing (LiDAR) data are often subjects to fusion, but 

also geographic information systems (giS) data, 
and ground data [Pohl and van genderen, 2015].

Fusion of spaceborne image data at pixel level 
is intended to integrate the information yielded at 
different spatial and spectral resolutions to the ef-
fect of including the data from high spatial but low 
spectral resolution into a low spatial but higher spec-
tral resolution image while preserving in the latter its 
high spectral resolution properties. Pixel-level fusion 
can also aim at increasing the temporal resolution 
of a sensor of low temporal resolution but high spa-
tial resolution through fusing its data with the data 
of a sensor of lower spatial resolution but higher tem-
poral resolution [Zang, 2010; Boschetti et al., 2015].

Very often this process is called resolution 
merging or pan-sharpening. The latter nickname 
reflects that in great majority of fusion cases at 
pixel level panchromatic (PAn) imagery is used as 
a high spatial and low spectral resolution informa-
tion source [Amro et al., 2011].

Pan-sharpening is frequently applied to a sin-
gle optical sensor data containing both panchro-

а. а. Коросов, а. в. моисеев, р. Шухман, д. в. поздняков. 
совмеЩение данныХ MODIS-AQUA и SENTINEL-2: применение 
К опТичесКи мелКим водам озера мичиган

Разработан инструмент для совмещения данных двух спутниковых датчиков цвета 
океана (Цо), один из которых имеет более высокое пространственное разреше-
ние, а другой – более высокое спектральное разрешение. В результате создается 
изображение, имеющее одновременно высокое пространственное и спектральное 
разрешение. Разработанный алгоритм совмещения данных использует аппарат 
искусственных нейронных сетей (инС), позволяющий устанавливать функцио-
нальную зависимость между входными и выходными данными, в качестве которых 
выступают значения радиационного сигнала, регистрируемого датчиком высокого 
пространственного разрешения в его спектральных каналах, со значениями ради-
ационного сигнала, регистрируемого датчиком высокого спектрального разреше-
ния в своих спектральных каналах. Эффективность разработанного инС-алгоритма 
демонстрируется для озера мичиган с использованием спектральных данных мно-
госпектрального прибора (mSi) Sentinel-2 и спектрорадиометра среднего разре-
шения (moDiS) moDiS-Aqua. Разработанный инструмент совмещения данных Цо 
не зависит от конкретного сочетания датчиков Цо и может сочетаться с различны-
ми алгоритмами восстановления искомых биогеохимических параметров. В случае 
восстановления параметров качества воды (ПКВ) в оптически мелких водах при-
менение разработанного инструмента совмещения данных Цо особенно эффек-
тивно, поскольку отражательные характеристики донного покрытия могут иметь 
высокую пространственную изменчивость. Для восстановления из совмещенных 
данных Цо значений ПКВ в оптически мелких водах использовался разработанный 
нами специальный алгоритм BoREALi-oSW, который позволяет на количественном 
уровне получать информацию не только о ПКВ, но и о характере донного покры-
тия. Эти возможности продемонстрированы на примере исследований восточного 
побережья озера мичиган, в ходе которых была документирована внутригодовая 
динамика значений ПКВ и выявлена пространственная неоднородность донного 
субстрата в этой мелководной части водоема.

К л ю ч е в ы е  с л о в а: совмещение данных многоспектральных датчиков цвета 
океана; оптически мелкие воды; восстановление параметров качества воды; иден-
тификация типа донного покрытия; озеро мичиган.
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matic and multispectral data (mS), but sometimes 
to multi-source data provided by two indepen-
dent optical sensors differing in spatial, spectral 
and temporal resolution. ideally, the outcome 
of pan-sharpening is an artificial image identical 
to the image that the mS sensor would yield provid-
ed it had the spatial resolution of the panchromatic 
(such as Satellite Pour l’observation de la Terre 
(SPoT), Landsat 7, iKonoS, Quickbird, orbView), 
or a paired higher spatial resolution optical sensor 
on board some other satellite.

Below we focus on the first of the abovemen-
tioned processing levels, i. e. pixel level, and more 
specifically, on pan-sharpening procedures.

Pixel level fusion: techniques and algorithm 
advancement

Due to a huge number of suggested and im-
plemented (over the last 30 years!) pixel-level 
pan-sharpening fusion methods, it is a challenge 
to overview and categorize them [Aiazzi and Apa-
rone, 2012].

Pohl and van genderen [2015] suggested 
the following categorization constituted by five 
groups: (i) component substitution (CS); (ii) nu-
merical and statistical image fusion; (iii) modula-
tion-based techniques, (iv) multi-resolution ap-
proaches, and (v) hybrid techniques.

Prior to overviewing the pan-sharpening tech-
niques, it is noteworthy to explicitly emphasize that 
in optical-optical data fusion the high spatial resolu-
tion data might be provided not solely by PAn imag-
es but also by multispectral and hyperspectral im-
ages with a lower spatial resolution in comparison 
with a higher spatial resolution multispectral image 
liable to fusion. necessitated by many applications, 
such as studies of fine features of surficial manifes-
tations of biogeochemical processes in aquatic en-
vironments, simultaneously high spectral resolution 
and high spatial resolution images are mandatory. 
However, at least presently, obtaining such data 
from one and the same optical sensor is unattain-
able due to its hardware limitations. For instance, 
data from the Sea-viewing Wide Field of-view Sen-
sor (SeaWiFS), moderate imaging Spectroradiom-
eter (moDiS), medium Resolution imaging Spec-
trometer (mERiS), and the recently put in orbit 
ocean and Land Colour instrument (oLCi) on Sen-
tinel 3. oLCi has a reasonably good set of water 
colour wavelengths but at a rather coarse (300 m) 
spatial resolution. Contrarily, e. g. Landsat Tm, ETm 
(+), and the multiSpectral instrument (mSi) on Sen-
tinel 2 yield data at much higher spatial resolution 
(several tens of meters), but a rather scarce number 
of spectral channels in the visible range. Thus, fre-
quently, it implies a multi-sensor data fusion.

(i) Briefly, CS techniques (also called projection 
techniques) convert a number of spectral bands 
inherent in the original image into e. g., another 
colour space where one of the resulting channels 
is replaced by a new image; the reverse transform 
yields the actual fused image accommodating in-
formation from both input data. Within this cat-
egory, the intensity hue saturation (iHS) [e. g. Ai-
azzi et al., 2007], principal component substitution 
(PCS), and the gram-Schmidt [Laben, and Brower, 
2000] techniques are most frequently exploited 
[Liu, and Liang, 2016]. in recent years iHS has un-
dergone numerous improvements to overcome 
the deterioration of the spectral content in the fused 
image (inclusion of trade-off parameters, enhance-
ment of iHS image- and edge-adaptivity, combina-
tion of mS-induced and PAn-induced weights, ad-
justment of histograms of the input images to as-
sure equality of the mean and standard deviations, 
for rfs. see Pohl and van genderen [2015].

CS methods suffer from spectral distortion due 
to the significant incompatibility of PAn (or any high 
spatial resolution image) and substituted compo-
nent. To overcome, at least partially, this challenge, 
many modified CS approaches have been suggest-
ed. Thus, there appeared a generalized iHS (giHS), 
a spectrally adjusted iHS (SAiHS) [Tu et al., 2004]. 
Based on the minimum mean square error criterion, 
an adaptive Principal Component Analysis (PCA) 
method [Aiazzi et al., 2007] calculates the optimal 
weights with respect to a low pass filter version 
of the Pan image. Capitalizing on the cross-correla-
tion coefficients, Shah et al. [2008] combined PCA 
with the contourlets transform approach, but this 
procedure should be rather ascribed to the family 
of hybrid techniques (see below).

Based on the technique nicknamed a guided fil-
ter (gF), Liu and Liang [2016] developed two novel 
methods, referred to as a band-dependent version 
and a multispectral version. operating with two 
parameters (regularization parameter and window 
size), this technique extracts the missing spatial de-
tails in the mS images by minimizing, with the help 
of mS images, the difference between the PAn im-
age and its filtered output. The claimed advantage 
of this approach is that it assures edge-preserving 
and structure-transferring.

(ii) Numerical and statistical approaches (nSA) 
perform multiplicative operations, create subtrac-
tive and ratios images. Widely used Bovery transform 
(BT) resides in spectral modeling intended to at-
tain a normalization of the input bands via addition, 
subtraction and ratio. The colour normalized (Cn) 
colour sharpening and local modulation of the mS 
image by the ratio of the new intensity and initial 
intensity components is developed to avoid colour 
distortion inherent in BT [Vrabel, 2000].
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The principal component analysis (PCA) is 
also a very popular tool. it implies the replace-
ment of the first PC by a high-resolution (e. g. 
a PAn or a low spatial mS) image. The other ver-
sion of this technique is the substitution of the last 
PC in the course of which spatial detail is injected 
instead of replacement by either a PAn or a low 
spatial mS image [Cakir and Khorram, 2008].

Provided the geometry (i. e. spatial feature) is 
encompassed by PAn or low spatial mS image, 
variational model using filtering and subsampling 
allows considering local relationships between 
neighboring pixels bringing about a noising effect 
[Duran et al., 2014].

A purely statistical approach (Fuze goTm) to fuse 
PAn and high spectral resolution images seeks 
a least square fit between the gray hues of the input 
image, and estimates the output values with statis-
tical methods.

(iii) The so called indusion technique also known 
as modulation-based approach (mBA) uses a ra-
tio between the PAn and its low-pass filtered im-
age with a further modulation of a lower spatial mS 
image. The latter can be upscaled by nonlinear 
interpolation to attain better results [Khan et al., 
2008]. if instead of PAn a low spectral resolution 
mS image is used, a modulation of the mS channel 
with spatial detail assures a robust implementation 
of this approach. The typical modulation-based 
fusion algorithms are composite and encompass 
Brovery [Vrabel, 2000], Smoothing Filter-based 
intensity modulation (SFim) [Liu, 2000], High-Pass 
spatial Filter (HPF) [Chavez et al., 1991; gangkof-
ner et al., 2008; Rong, 2014] and Synthetic Variable 
Ratio (SVR) [Zhang, 1999] fusion algorithms (see 
below in hybrid algorithms paragraph).

if within nSA the spatial detail is injected into 
mS from PAn with the interband structure mod-
el [garzelli and nencini, 2005], the application 
of the modulation transfer function of the imaging 
system might be desirable as this permits to a cer-
tain degree avoiding spectral distortion.

(iv) Employing wavelets, curvelets, contourlets 
and similar transforms [Starck et al., 2003; Choi 
et al., 2004; Zang, 2009; metwalli et al., 2014], multi-
resolution analysis (mRA) techniques decompose 
input images into multiple channel images and find 
their application for revealing high frequency spa-
tial detail. multi-scale models are layered as a pyra-
mid whose base is the original image. Layering is 
performed using the above transforms. The fused 
image is obtained by the inverse transform. otazu 
et al. [2005] have extended this technique so that it 
can be applied to any number of mS bands.

(v) To overcome the spectral incompatibility 
of PAn and mS images, instead of inserting gray hue 
values into mS spectral components, several alter-

native ways were exploited. They are subsumed un-
der the category of hybrid techniques. For instance, 
the iHS transform [Hong and Zhang, 2009] converts 
the original mS bands into iHS space. Then the fast 
Fourier transform (FFT) [nussbaumer, 1982] is 
applied to both the obtained intensity spectrum 
and the PAn images [Ling et al., 2007]. Further, 
the former is low spatial frequency pass filtered, 
while the latter is high spatial frequency filtered. 
With the inverse FFT the thus processed mS images 
are converted back into the spatial domain. Called 
the Ehler fusion, this method eliminates the limita-
tions inherent in other methods even for multi-sen-
sor or multi-temporal images [Klonus, 2008].

To facilitate the optimization of both spec-
tral and spatial content of fused images, the iHS 
transform in combination with, e. g., wavelet trans-
form (WT) is suggested [e. g. Hong et al., 2009]. 
mS data are transformed by iHS and the intensity 
component is further decomposed by WT to reach 
the same pixel size as PAn. This is followed by re-
placing the intensity wavelet decompositions by 
the PAn decompositions.

The idea of parameter optimization in conjunc-
tion with low spatial frequency filter (LF) and em-
pirical adjustment of intensity image by means 
of regressing mS and histogram-matched PAn was 
exploited to derive a general hybrid algorithm [Choi 
et al., 2013].

The comparison of different methods in order 
to identify the best fusion algorithm is a challeng-
ing and doubtful task as the authors report on their 
own algorithm efficiency applied to the solution 
of the tasks they had to tackle. moreover, it is 
hardly appropriate to compare the fusion algorithm 
efficiency when it is applied to different sensors, 
different covered area, etc. Even if the studies are 
similar, different choices of individual parameters 
should be of significant essence. The same refers 
to fusion quality assessment as the criteria chosen 
by different workers are so diverse [Palubinskas, 
2013; Pohl and van genderen, 2015]. Undoubtedly, 
the most successful image fusion algorithms must 
be sensor-specific and adaptive. This accentuates 
the problem of exploitation of data from a continu-
ously extending number of new sensors such as, 
e. g., the satellite sensors recently put in the orbit 
and planned for the years to come under the Co-
PERniCUS Program.

Below we present our original approach 
to the optical-optical mS fusion. in what follows we 
show that in the present form the developed proce-
dure is of the hybrid family: belonging ideologically 
to the CS cohort of fusion methods (radiometric 
intensity values are substituted by RgB values), it 
exploits artificial neural networks (Anns) to inject 
high spatial resolution features into a higher spec-
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tral resolution image. The performance of this ap-
proach is illustrated for michigan.

The fusion option selected by us (fusion 
of the mSi mS images with the moDiS RgB image 
of one and the same area and time of data acqui-
sition) was purported to provide a visually easily 
perceivable result of fusion. A statistical assess-
ment of correspondence between remote sens-
ing reflectance, Rrs values inferred from the moDiS 
and fused data at three wavelengths used to gen-
erate the RgB images was intended to illustrate 
the fusion procedure adequacy.

2. Methodology description

ANN approach

The Ann approach is veritably sensor-specific 
and adaptive. it is known that in pattern recognition 
tasks it proved to be more powerful and efficient 
in comparison to, e. g., linear and simple nonlinear 
analyses [Haykin, 1998].

in application to image fusion, the Ann-based 
method employs a nonlinear response function that 
iterates many times in a special network structure 
(exemplified in Fig. 1) in order to learn the complex 
functional relationship between input and output 
training data.

The input layer has several neurons, which rep-
resent the feature factors extracted and normalized 
from image A and image B. The function of each 
neuron is a sigmoid function given by:

  (1)

The hidden layer has several neurons 
and the output layer has one neuron (or more neu-
rons). The ith neuron of the input layer connects 
with the jth neuron of the hidden layer by weight 
Wij. The weight between the j-neuron of the hid-
den layer and the tth neuron of the output layer is 
Vj (in the considered application of the Ann-based 
algorithm t = 1). The weighting function is used 
to simulate and recognize the response relationship 
between features of the fused image and the cor-
responding feature from the original images (image 
A and image B).

The Ann fusion model can be presented 
as follows:

  (2)

where Y = pixel value of the fused image export-
ed from the neural network model, q = number 
of nodes in the hidden layer (s) (we employed two 
hidden layers with q = 14 + 2), Vj = weight between 
the jth hidden node and the output node t (t = 1), 
γ = threshold of the output node t, Hj = exported 
values from the jth hidden node:

  (3)

where Wij as above is the weight between the ith 
input node and the jth hidden node, ai = val-
ues of the ith input factor, n = number of nodes 
in the input layer (n=13 in the Ann architecture 
used in the present work), θj = threshold of the jth 
hidden node.

Fig. 1. An example of the Ann architecture
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in the first step of Ann-based data fusion, two 
registered mS images are decomposed into sever-
al blocks/windows with the size of m and n. Then, 
features of the corresponding blocks/win-
dows in the two original images are extracted, 
and the normalized feature vector incident to neu-
ral networks can be constructed. The features used 
here to evaluate the fusion effect are normally spa-
tial frequency, visibility, and edge. The next step 
is to select some vector samples to train neural 
networks. An Ann is a universal function-approx-
imator that adapts to any nonlinear function de-
fined by a representative set of training data. once 
trained, the Ann model can remember the learned 
functional relationship and eventually be used for 
further calculations. it is exactly because of these 
reasons that the Ann concept has been adopted 
to develop strongly nonlinear models for multiple 
sensors data fusion.

The Ann-based fusion method exploits the pat-
tern recognition capabilities of artificial neural 
networks. The learning capability of neural net-
works makes it feasible to customize the image fu-
sion process. many of applications indicated that 
the Ann-based fusion methods had more advan-
tages over traditional statistical methods, specifi-
cally, when input multiple sensor data were incom-
plete or noisy. it often serves as an efficient tool at 
a decision fusion level for its self-learning capabil-
ity, especially in land use/land cover classification. 
in addition, the multiple inputs − multiple outputs 
framework makes it a useful approach to fusion 
of high dimension data, such as long-term time-
series or hyperspectral data.

Fuzzy k-mean classification algorithm for 
bottom type identification

The fuzzy k-means classification is based 
on clusterization, i. e. the bringing together of ob-
jects into groups/clusters based on the likeli-
hood of features for the objects of one group 
and unlikeness between other groups. An impor-
tant advantage of such algorithms is that they do 
not rely on the traditional assumptions for statisti-
cal methods: they can be employed under condi-
tions of a near-complete absence of information 
on the type of data distribution. For such algorithms, 
the input information for clusterization is the matrix 
of observations (X) with the size M × N, where M is 
the number of rows, corresponding to the number 
of objects and N is the number of characteristics. 
Fuzzy clusters are described by a matrix of fuzzy 
partitioning/fragmentation [Pintore et al., 2003]:

  (4)

where the kth line assigns the degrees/weights 
with which the object (xk,1, xk,2,…xk, m) be-
longs to clusters A1, A2,…, Ac. The matrix F de-
scribes the degree of belonging to a cluster and, 
in the case of fuzzy partitioning, the given object 
belongs to the cluster and the degree to which this 
belongingness can vary is assessed within the in-
terval [0,1]. The conditions of fuzzy partitioning are 
formalized as follows:

  (5)

Fuzzy partitioning permits to easily solve 
the problem related to objects located at the in-
terface of two clusters: it is done through attribut-
ing to them the degree of belonging equal to 0.5. 
The intrinsic drawback of fuzzy partitioning stands 
out when dealing with objects distanced from 
the centers of all clusters. Distanced objects have 
little in common with each of the cluster, so that 
intuitively it seems reasonable to attribute to them 
low degrees of belonging. However, according 
to the condition stipulated by the equation (6), 
the sum of their degrees of belonging is the same 
as it is for the objects, located close to the cluster 
centers, i. e. equal to 1. To overcome this draw-
back, it is possible to resort to partitioning based 
on plausibility. it requires the fulfillment of a sole 
condition: an arbitrary object from X must belong 
to at least one cluster. Such partitioning is achieved 
through setting a less rigorous condition (see  
equation (5)).

For the assessment of the quality of fuzzy parti-
tioning the following criterion of departures is used:

  (6)

where  are the centers
 

of fuzzy clusters, m∈ [1,∞) is the exponential 
weight determining the “fuzziness”, overlapping 
of clusters.

There is a considerable number of algorithms 
of fuzzy clusterization based on the minimiza-
tion of the criterion in equation (3). Developing 
matrix F of fuzzy partitioning with a minimal value 
of the criterion in equation (5) is the task of a non-
linear optimization, which in turn can be resolved 
making use of different methods. The frequently 
used one is the algorithm of fuzzy k-means based 
on the Lagrangian method of non-determined 
factors/multiplies [Zimmermann, 2001, see also 
Shahraiyni et al., 2009]. The assessment of the ac-
curacy of this algorithm dedicated to mapping 
of L. chlorophorum is reported in [morozov et al., 
2010].
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3. Lake Michigan: a concise general 
description

Due to the nature of its formation (initially a pris-
tine melt water body), and the resulting morphom-
etry, thermal regime, watershed soil and geochem-
istry of Lake michigan (41°35’n – 46°n; 85°W – 
88°W), this water body was originally oligotrophic 
[Chapra et al., 1981; gillespie et al., 2008].

it still remains mostly as such due to its gla-
cial heritage, although there are indications that 
the lake’s trophic status should now be defined as 
oligo-mesotrophic [mida et al., 2010]. This is be-
cause Lake michigan has been subjected to exter-
nal pressure produced by climate warming (water 
temperature growth in upper layers), atmospheric 
fallouts (phosphorus deposition) and human ac-
tivities (input of phosphorus and other pollutants, 
including toxic ones, through sewages and atmo-
spheric deposition). At the same time, during 
the second part of the previous century the lake 
became an arena of ballast water mediated in-
troduction of invasive species such as quagga 
and zebra mussels, which act as water filterers. 
As a result, they damage the lake ecosystem via 
disrupting some intrinsic trophic interactions but 
also increase the water transparency (e. g. at 
the Sleeping Bear Dunes the water bottom vis-
ibility depth has increased from ca 2.5 m in 1970 
up to 20 m in 2010), let more solar light reach 
the bottom in shallow coastal zones and stimulate 
the growth and increase the areal extent of macro-
phytes [nalera and Schloesser, 2014].

Location of the target shallow area in Lake 
Michigan

The fusion methodology developed was ap-
plied to the lake’s eastern coast, and more 
specifically, a colocation called “Sandy Bear 
Dunes” (44°50’n, 88°W). it has a sandy beach, 
and the bottom depths not exceeding (https://
www.ngdc.noaa.gov/mgg/greatlakes/michigan. 
html). The bottom substrate is predominantly san-
dy with occasional inclusions of spots of macro-
phyte stands with Cladophora as the main species 
[mida et al., 2004]. Reportedly, the offshore extent 
of macrophytes along the coastal zone generally 
does not exceed 5–10 m, although along the north-
ernmost periphery of the lake the standing stocks 
are found at depths nearing 20–25 m [Shuchman 
et al., 2013].

Presently, the phytoplankton communi-
ty comprises four major groups: blue-green 
and green algae, diatoms and flagellates 
(http://www.glerl.noaa.gov/pubs/brochures/
foodweb/Lmfoodweb. pdf).

4. Input and output data description

We employed the radiometric data from two 
satellites, viz. Sentinel-2 and moDiS-Aqua. Sen-
tinel is the name for a family of environmental re-
mote sensing platforms launched and also waiting 
for launching under the ESA CoPERniCUS Pro-
gramme (www.copernicus.eu).

For our purposes, data from only one satellite 
of this series, viz. Sentinel-2a, were available so far 
(below referred to as S-2a). The S-2a platform ac-
commodates the multispectral imager (mSi), which 
provides data at high spatial resolution (10–60 m) 
in several spectral channels in the visible. However, 
the number of spectral channels in the visible (only 
four) and their placement (Table) are, respectively, 
rather limited and not optimally suited. These defi-
ciencies preclude the use of this sensor for efficient 
retrieval of water quality parameters in situations 
of optically complex or shallow waters. Thus, in our 
studies S2a acted in the capacity of a sensor with 
high spatial but low spectral resolution (Table), whose 
data were to be fused with a sensor providing higher 
spectral resolution although at a rather coarse spa-
tial resolution. S-2a was launched on June 23, 2016, 
and its orbit was adjusted to assure the revisit time 
of 10 days. in the case of Lake michigan, the time 
of this satellite overflight was close to 5 p. m. Satel-
lite S-2b was launched on 07.03.2017 and presently 
the data from this satellite are yet unavailable.

mSi data were from the L1C level (https://
earth.esa.int/web/sentinel/user-guides/sentinel-
2-msi/processing-levels) [i. e. not atmospherically 
corrected] in 13 spectral channels (Table, A). Fur-
ther on, these L1C data were atmospherically cor-
rected (see section input Data Processing).

These data were fused with the data from mo-
DiS-Aqua available at a much higher spectral reso-
lution (6 bands in the visible and 1 band in the near 
iR [865 nm]), but at a lower spatial resolution (with 
1 km in the visible) (Table, B).

Satellite level 1 data processing

Atmospheric correction and image preparation 
for the fusion procedure

a) S-2a data: we applied the ESA algo-
rithm of atmospheric correction Sen2cor 
(http://step.esa.int/main/third-party-plugins-2/
sen2cor/). S-2a data are provided by ESA in gran-
ules sizing 100 km by 100 km) (https://earth.esa.int/
web/sentinel/user-guides/sentinel-2-msi/prod-
uct-types). The granules are to be further mosa-
icked, and latitudinally-longitudinally reprojected 
(EPSg:4326 – WgS84). For fusion, S-2a data were 
reduced to a 60 m spatial resolution per pixel.
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b) moDiS-Aqua data
our analysis of the spectral curvature of remote 

sensing reflectance, Rrs (λ) [which is the upwelling 
spectral radiance above the water-air interface, 
L (0) normalized to the downwelling spectral irradi-
ance, E (0) at the same level [e. g. Jerome et al., 
1996] revealed that the moDiS-Aqua atmosphe-
ric correction frequently results in negative values 
of Rrs (λ) in the blue part of the spectrum. it implies 
that the standard atmospheric correction is very in-

accurate, and such data could not be used for fur-
ther processing.

To overcome this problem, we applied 
the mUmm code based on the gW94 AC. https://
www.osapublishing.org/vjbo/fulltext.cfm?uri=oe-
21-18-21176&id=260880#g001). The applica-
tion of the mUmm correction procedure signifi-
cantly eased the problem with negative values 
of Rrs in the shortwave region of the visible spec-
trum. Performance of the mUmm procedure 

Spectral channels: location and spatial resolution for S-2a (A) and moDiS-Aqua (B)
A B

Band # Central 
wavelength, nm

Bandwidth, nm Band # Central 
wavelength, nm

Bandwidth, nm

1 443 (60 m) 27 8 412 (1 km) 405–420
2 490 (10 m) 94 9 443 (1 km) 438–4428
3 560 (10 m) 45 10 488 (1 km) 483–493
4 665 (10 m) 38 11 531 (1 km) 526–536
5 705 (20 m) 19 1 645 (1 km) 620–670
6 740 (20 m) 18 14 678 (1 km) 673–683
7 783 (20 m) 28
8 842 (10 m) 145

8A 865 (20 m) 33
9 945 (60 m) 26

10 1375 (60 m) 75
11 1610 (20 m) 143
12 2190 (20 m) 242

Fig. 2. Flowchart of S-2 and moDiS imagery processing
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of atmospheric correction, is effected through 
the employment of the SeaDAS processing 
code (https://seadas.gsfc.nasa.gov/) extended 
for working with ocean colour data (oCSSW), 
i. e. images were downloaded from https://
oceancolor.gsfc.nasa.gov/ site and then subjected 
to geolocation (L1B level). Thus, moDiS L2A level 
spectrometric data were obtained.

5. S-2a and MODIS-Aqua data fusion 
procedure

To prepare moDiS-Aqua L2A images to fusion 
they were reprojected and synchronized (in terms 
of geolocation) with the paired S-2a images.

ANN architecture

our Ann consists of four layers of neurons 
(Fig. 1). The first layer encompasses 13 neurons 
accommodating Rrs values from the S2a 13 spec-
tral channels (Table, A). Two hidden layers have 
14 and 2 neurons. The third layer consists of only 
1 neuron yielding the value of Rrs at each of the 
 moDiS spectral channels, i. e. 412, 443, 488, 531, 
645 and 678 nm (Table, В). That is, we develop sep-
arate nn for each moDiS spectral channel. The de-
velopment of nns with only one output neuron could 
be performed relatively fast: the computing time 
required for training the nns for the fusion of one 
pair of moDiS-Aqua and S-2a images depends 
on the computer power, but in our case, it took one 
hour. Thus, it makes the developed method quite 
practical. Training of each nn was conducted until 
the RmSE reaches the value of 10–15 %.

Thus, the established values of S-2a Rrs at 
the moDiS 6 wavelengths permit to obtain the de-
sired information at the moDiS spectral resolution 
and S-2a high spatial resolution, and hence attain 
the aim of data fusion.

6. Results of S-2a and MODIS-Aqua data 
fusion

RDG images

Visual analysis of paired Smi and moDiS data 
has shown that for the entire 2016 growing season 
only five pairs could be used for fusion. The dates 
of overflights are 09.05; 05.076; 26.07; 15.08; 
04.09. The time difference of the five overflights did 
not exceed 2.5 hours. Figure 3 illustrates the spa-
tial distribution of RgB images generated from 
 moDiS-Aqua and fused moDiS-Aqua – S-2a data 
for the above dates.

The RgB images developed from the fused S-2a 
and moDiS-Aqua data exhibit a logical sequence 

of phases of phytoplankton development in Lake 
michigan. indeed, the green areas (corresponding 
to enhanced concentrations of phytoplankton chlo-
rophyll) stand out twice in the year, viz., in spring 
and early autumn (i. e. 09.05 and 15.08), which is 
in complete conformance with vernal and autumnal 
phytoplankton outbreaks in Lake michigan [Shuch-
man et al., 2006; their Fig. 6].

Application of the BOLEALI-OSW algorithm

The BoLEALi-oSW algorithm is described in de-
tail elsewhere [Korosov et al., 2017]. it is based 
on both the Levenberg-marquardt multivariate pro-
cedure [Press et al., 1992] and the theory of light 
transfer in semi-infinite media [maritorena et al., 
1994]. Within our approach, the remote sensing 
reflectance Rrs (λ) is presented as a sum of two 
components originating from the light interactions 
within the water column, Rrs DEEP and the bottom. 
The optical influence of the latter is determined by 
the bottom substrate spectral albedo, A (λ). Thus, 
the resultant (total) spectral remote sensing reflec-
tance, RrsTOT can be formalized as follows:

 (7)

where +0 indicates the air-water interface, 
K = spectral coefficient of upwelling and down-
welling light attenuation in the water column, 
H = bottom depth, Q = ratio of the upwelling radi-
ance to downwelling irradiance at level +0.

The fused ocean color data were processed with 
the BoREALi-oSW algorithm to retrieve the con-
centrations of phytoplankton chlorophyll, total sus-
pended matter and cdom.

Fig 4 illustrates the spatial distributions of phy-
toplankton chl concentrations for the above five 
dates as obtained from the fused moDiS-Aqua 
and S-2a data. The paired plates in Fig. 4 explicitly 
show the advantage of the fusion procedure over 
the results from solely moDiS-Aqua.

The adequacy of the retrieved concentrations 
could only be assessed through a comparison 
with in situ data, but the latter were unavailable for 
us. nevertheless, the retrieved chl and tsm con-
centrations comply well with the data reported for 
this part of the lake and this time range [Korosov 
et al., 2017].

Mapping of bottom type

mapping of bottom type was performed for 
an area called Pyramid Point within the afore-
mentioned Sandy Bear Dunes site. The k-means 
technique concisely described above was applied 
to bottom substrate classification. Spectra of Rrs 
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Fig. 3. RgB images generated from moDiS-Aqua data (a) and fused moDiS-Aqua-S-2a data (b) 
for 09.05; 05.076; 26.07; 15.08; 04.09 (presented in the top to bottom sequence)
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Fig. 4. Spatial distributions of СHL from (a) moDiS-Aqua data and (b) fused moDiS-
Aqua and S-2a data for 09.05; 05.076; 26.07; 15.08; 04.09 (presented in the top to bot-
tom sequence).
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values from the fused data (at 60 m resolution) 
were partitioned into three classes: sand, chara 
stands (chara is a genus of charophyte green algae 
in the family Characeae known to be common for 
the coastal area of Lake michigan [Shuchman et al., 
2013]), and some sandy substrate either sparsely 
covered by macrophytes (chara or cladophora) 
or slightly silted. The area was confined to depths 
not exceeding 15 m.

The clusterization thus performed permitted 
to produce a map of bottom type heterogeneity at 
a 60 m spatial resolution (Fig. 5).

The above-described bottom type classification 
reveals that the area adjacent to the coast is sandy 
(it is characterized by the highest bottom albedo). 
Further off-coast, the area with a depth of 10–15 m is 
covered by chara stands. The intermediate area be-
longs to the intermediate class, although it contains 
sandy spots as well as spots covered by submerged 
vegetation stands. These features explicitly indicate 
that the spatial heterogeneity of the area ascribed 
to class 2 is not due to depth changes, but is driven 
by changes in the bottom albedo.

Concluding remarks

Thus, summing up, we have developed and re-
alized in a computer code our own method of ocean 

color data fusion. The fused images were pro-
cessed with the BoREALi-oSW algorithm to yield 
the CPA concentrations in the target optically shal-
low area of Lake michigan. The retrieved concen-
trations comply well with the respective values typi-
cal of this lacustrine area.

We have investigated the possibility of employ-
ing the fused data for retrieving the bottom type. 
This tentative bottom type classification is rather 
rough as only three classes were presumed. in real-
ity the bottom cover might be more heterogeneous 
if the respective mosaic elements are smaller than 
the spatial resolution of the fused radiometric data.

The attained results strongly suggest that 
the developed algorithm can be successfully 
used for fusion of data from Sentinel-2 and Senti-
nel-3 because Sentinel-3 is highly akin to moDiS-
Aqua in terms of the spectral and spatial resolution 
[Donlon et al., 2012].

Understandably, our fusion algorithm can be 
applied to data of the above sensors not only 
to generate RgB images of higher spatial resolu-
tion but also Rrs values in the Sentinel-3 spectral 
bands in the visible. it will require training of a larger 
number of nns (according to the number the Sen-
tinel-3 spectral bands in the visible). Because 
of this, the approach proposed might appear at 
first sight rather cumbersome. But the relative sim-

Fig. 5. Spatial distribution of bottom types (classes 1–3) as obtained for the Pyramid Point 
making use of the k-means and fusion techniques.
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plicity of the method (as compared to those we dis-
cussed in the review section) and reasonably man-
ageable computing time can successfully balance 
this seeming drawback.

We envisage that employment of S-3 data will 
also be very beneficial: sooner or later moDiS- 
Aqua will cease its performance, while S-3 (with 
nearly the same radiometric characteristics as 
moDiS Aqua) will, supposedly, last at least for 
the next decade.
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