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Subsumed under the category of ocean colour (OC) data fusion tools, a new approach is
developed to efficiently use the merits of two OC satellite sensors differing in their spatial
and spectral resolution characteristics. The tool permits to combine high spectral but low-
er spatial resolution optical data from one satellite sensor with higher spatial resolution but
lower spectral resolution data from the other one into animage possessing simultaneously
both high spectral and high spatial resolution qualities. The developed algorithm employs
the artificial intelligence tool: emulated/artificial neuron networks (ANNs). The developed
ANN algorithm performance and efficiency are demonstrated for Lake Michigan. The fu-
sion was effected making use of multiband data from Sentinel-2 Multispectral Instrument
(MSI) and MODIS-Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sen-
sors. In this version MODIS-Aqua sensor is chosen as an analog of the Sentinel 3 OLCI,
whose spectrometric and atmospheric corrected data are yet unavailable. The multi-
sensor (MS) optical-optical fusion results have persuasively demonstrated the efficiency
of the approach and its applicability to studies of natural water bodies of different optical
complexity. It can be utilized in combination with any biogeochemical retrieval algorithms.
In the case of retrieving water quality parameters (WQP) in optically shallow aquatic en-
vironments, the employment of the fusion tool developed is particularly promising as
the bottom reflectance properties are frequently highly heterogeneous. Indeed, in such
cases, remote sensing optical data acquired at simultaneously high spatial and spectral
resolution are certainly more advantageous as compared to those acquired separately by
two different sensors operating either at high spatial (but low spectral) or high spectral
(but low spatial) resolution. For the retrieval of WQP in optically shallow waters (OSW)
a special algorithm called Biooptical Retrieval Algorithm (BOREALI) - OSW was applied
to study the eastern coastal zone of Lake Michigan. The application of both the OC fu-
sion tool and our BOREALI-OSW algorithm permitted to document both interannual dy-
namics in WQPs as well as bottom substrate spatial heterogeneity in the target OSW area
of Lake Michigan.

Keywords: fusion of multi-sensor ocean colour remote sensing data; optically shallow
waters; retrieval of water quality parameters; bottom cover identification; Lake Michigan.
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A. A. Kopocos, A. B. Moucees, P. WyxmaH, A. B. NMNo3gHakoB..
COBMELLEHUE OAHHbIX MODIS-AQUA U SENTINEL-2: NTPUMEHEHMUE
K ONTU4ECKU MEJTIKUM BOOAM O3EPA MUYUTAH

Pa3paboTaH MHCTPYMEHT AJ11 COBMELLEHNS OaHHbIX ABYX CMYTHMKOBbIX JATYMKOB LBeTa
okeaHa (LLO), oanH n3 KoTopbix MMeeT 6onee BbICOKOE NMPOCTPaHCTBEHHOE pa3peLle-
Hue, a apyroi — 6osiee BbICOKOE CreKTpasibHOe pa3peLlleHne. B peaynbtaTe co3paeTcs
n3obpaxeHune, nmeloLee 0AHOBPEMEHHO BbICOKOE MPOCTPaHCTBEHHOE U CriekTpaibHoe
paspelueHme. Pa3paboTaHHbI anropuTtM COBMELLEHUS OAaHHbIX MCMOJb3yeT annapat
WNCKYCCTBEHHbIX HEMpPOHHbIX ceTelr (MHC), noseonsowmini yctaHaBnmBatb OYHKLMNO-
HasIbHYIO 3aBUCUMOCTb MeXay BXOOHbIMU U BbIXOAHBIMWU OAaHHBIMU, B KQYECTBE KOTOPbIX
BbICTYMNatOT 3HAYEHUS PAANALMOHHOIO CUrHana, PermMcTpupyemMoro gatinkom BbICOKOrO
NPOCTPaHCTBEHHOIO pa3peLLeHns B ero CNekTpasibHbIX KaHanax, Co 3HaYeHUsMM paan-
aLMOHHOr0 cuUrHana, perMcTpMpyemMoro AaTtinkoM BbICOKOrO CMeKTpasibHOro paspelle-
HWS1 B CBOMX CNEKTPaJIbHbIX KaHanax. 9P pekTnBHOCTb paspaboTtaHHoro MHC-anroputma
[eMOoHCTpupyeTcs ans o3epa MuyunraH ¢ ICNoAb30BaHMEM CMEeKTPasbHbIX AaHHbIX MHO-
rocnekTpanbHoro npudopa (MSI) Sentinel-2 n cnekTpopaguomeTpa cpeaHero paspe-
weHns (MODIS) MODIS-Aqua. Pa3paboTaHHbI MIHCTPYMEHT COBMELLLEHUS AaHHbIX LLO
He 3aBMCUT OT KOHKPETHOro coyeTaHus gatyinkoB LLO 1 MoxeT coveTaTbCsl C pas3nyHbl-
MW anropuTMamMm BOCCTAHOBJIEHMSI UICKOMbIX O1MOreoxXrMmnyeckmx napameTpos. B cnyyae
BOCCTaHOBJIEHUSI NapameTpoB KadyecTtBa Boabl ([MKB) B onTnyeckn Menkux Bogax rnpui-
MeHeHMe pa3paboTaHHOro MHCTPYMeHTa coBMelleHns aaHHbix LIO ocobeHHO adpdek-
TUBHO, MOCKOJIbKY OTpa)xaTesibHble XapaKTePUCTUKN OOHHOrO MOKPLITUS MOTYyT UMETb
BbICOKYIO MPOCTPAHCTBEHHYIO M3MEHYMBOCTb. [/ BOCCTAHOBNEHUSI N3 COBMELLEHHbIX
naHHbIX LLO 3HaveHni MKB B onTuyecku Menkux Bogax Mcnonb3oBasncs pa3paboTaHHbIn
HamMu cneumanbHblii anroputv BOREALI-OSW, KOTOpbI NO3BONSET Ha KOIMYECTBEHHOM
YPOBHe nosnyyatb MHdopmaumio He Tosbko o MKB, HO 1 0 xapakTepe AOHHOro MOKPbI-
TNS. DTN BO3MOXHOCTM NPOAEMOHCTPMPOBaHbI Ha NpUMepe NCCNeaoBaHni BOCTOYHOIO
nobepexbs o3epa MuumraH, B Xofe KOTOpbIX Oblna AOKYMEHTUPOBaHA BHYTPUrogoBas
AvHamMmuka 3HadeHuin NMKB 1 BbisiBNeHa NpoCTpaHCTBEHHAsk HEOQHOPOOHOCTbL AOHHOIO
cybcTpaTa B 3TOM MeNKOBOAHOW YacTu Bog0eMaA.

KniouyeBble CNnoOBa: COBMELLEHNE OaHHbIX MHOrocrnekTpasbHbIX OATYMKOB LBETa
oKeaHa; ONTUYeCKU MeJsikme Bodbl; BOCCTAaHOBJIEHME NapaMeTPOoB KavyecTBa BOAbl; NAEH-
Tndurkaums Tmna AOHHOO NOKPbLITUSA; 03epo MuumraH.

1. Introduction

Known as a process of combining two or more
different images into a single one, image fusion is
intended to generate a new image carrying refined/
improved information sought for by researchers.

According to the needs of the latter, image fu-
sion is performed at three processing levels, viz.,
pixel, feature, and decision levels [Pohl and van
Genderen, 1998].

High-level fusion, i. e. feature level and decision
level fusion is a multi-source data fusion that em-
ploys certain combinations of data sources of vari-
ous nature being dictated by specific aims. Feature
level fusion extracts various features (e. g. texture
parameters) from different data sources to further
combine them into one or more feature maps.

Methods of decision level fusion encompass
voting, statistical and fuzzy logic-based me-
thods. In high-level fusion, optical, synthetic ap-
erture radar (SAR), and light detection and rang-
ing (LIDAR) data are often subjects to fusion, but

also geographic information systems (GIS) data,
and ground data [Pohl and van Genderen, 2015].

Fusion of spaceborne image data at pixel level
is intended to integrate the information yielded at
different spatial and spectral resolutions to the ef-
fect of including the data from high spatial but low
spectral resolution into a low spatial but higher spec-
tral resolution image while preserving in the latter its
high spectral resolution properties. Pixel-level fusion
can also aim at increasing the temporal resolution
of a sensor of low temporal resolution but high spa-
tial resolution through fusing its data with the data
of a sensor of lower spatial resolution but higher tem-
poral resolution [Zang, 2010; Boschetti et al., 2015].

Very often this process is called resolution
merging or pan-sharpening. The latter nickname
reflects that in great majority of fusion cases at
pixel level panchromatic (PAN) imagery is used as
a high spatial and low spectral resolution informa-
tion source [Amro et al., 2011].

Pan-sharpening is frequently applied to a sin-
gle optical sensor data containing both panchro-
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matic and multispectral data (MS), but sometimes
to multi-source data provided by two indepen-
dent optical sensors differing in spatial, spectral
and temporal resolution. Ideally, the outcome
of pan-sharpening is an artificial image identical
to the image that the MS sensor would yield provid-
ed it had the spatial resolution of the panchromatic
(such as Satellite Pour I'Observation de la Terre
(SPOT), Landsat 7, IKONOS, Quickbird, OrbView),
or a paired higher spatial resolution optical sensor
on board some other satellite.

Below we focus on the first of the abovemen-
tioned processing levels, i. e. pixel level, and more
specifically, on pan-sharpening procedures.

Pixel level fusion: techniques and algorithm
advancement

Due to a huge number of suggested and im-
plemented (over the last 30 years!) pixel-level
pan-sharpening fusion methods, it is a challenge
to overview and categorize them [Aiazzi and Apa-
rone, 2012].

Pohl and van Genderen [2015] suggested
the following categorization constituted by five
groups: (i) component substitution (CS); (ii) nu-
merical and statistical image fusion; (iii) modula-
tion-based techniques, (iv) multi-resolution ap-
proaches, and (v) hybrid techniques.

Prior to overviewing the pan-sharpening tech-
niques, it is noteworthy to explicitly emphasize that
in optical-optical data fusion the high spatial resolu-
tion data might be provided not solely by PAN imag-
es but also by multispectral and hyperspectral im-
ages with a lower spatial resolution in comparison
with a higher spatial resolution multispectral image
liable to fusion. Necessitated by many applications,
such as studies of fine features of surficial manifes-
tations of biogeochemical processes in aquatic en-
vironments, simultaneously high spectral resolution
and high spatial resolution images are mandatory.
However, at least presently, obtaining such data
from one and the same optical sensor is unattain-
able due to its hardware limitations. For instance,
data from the Sea-viewing Wide Field of-view Sen-
sor (SeaWiFS), Moderate Imaging Spectroradiom-
eter (MODIS), Medium Resolution Imaging Spec-
trometer (MERIS), and the recently put in orbit
Ocean and Land Colour Instrument (OLCI) on Sen-
tinel 3. OLCI has a reasonably good set of water
colour wavelengths but at a rather coarse (300 m)
spatial resolution. Contrarily, e. g. Landsat TM, ETM
(+), and the MultiSpectral Instrument (MSI) on Sen-
tinel 2 yield data at much higher spatial resolution
(several tens of meters), but a rather scarce number
of spectral channels in the visible range. Thus, fre-
quently, it implies a multi-sensor data fusion.

(i) Briefly, CS techniques (also called projection
techniques) convert a number of spectral bands
inherent in the original image into e. g., another
colour space where one of the resulting channels
is replaced by a new image; the reverse transform
yields the actual fused image accommodating in-
formation from both input data. Within this cat-
egory, the intensity hue saturation (IHS) [e. g. Ai-
azzi et al., 20071, principal component substitution
(PCS), and the Gram-Schmidt [Laben, and Brower,
2000] techniques are most frequently exploited
[Liu, and Liang, 2016]. In recent years IHS has un-
dergone numerous improvements to overcome
the deterioration of the spectral contentin the fused
image (inclusion of trade-off parameters, enhance-
ment of IHS image- and edge-adaptivity, combina-
tion of MS-induced and PAN-induced weights, ad-
justment of histograms of the input images to as-
sure equality of the mean and standard deviations,
for rfs. see Pohl and van Genderen [2015].

CS methods suffer from spectral distortion due
to the significant incompatibility of PAN (or any high
spatial resolution image) and substituted compo-
nent. To overcome, at least partially, this challenge,
many modified CS approaches have been suggest-
ed. Thus, there appeared a generalized IHS (GIHS),
a spectrally adjusted IHS (SAIHS) [Tu et al., 2004].
Based on the minimum mean square error criterion,
an adaptive Principal Component Analysis (PCA)
method [Aiazzi et al., 2007] calculates the optimal
weights with respect to a low pass filter version
of the Pan image. Capitalizing on the cross-correla-
tion coefficients, Shah et al. [2008] combined PCA
with the contourlets transform approach, but this
procedure should be rather ascribed to the family
of hybrid techniques (see below).

Based on the technique nicknamed a guided fil-
ter (GF), Liu and Liang [2016] developed two novel
methods, referred to as a band-dependent version
and a multispectral version. Operating with two
parameters (regularization parameter and window
size), thistechnique extracts the missing spatial de-
tails in the MS images by minimizing, with the help
of MS images, the difference between the PAN im-
age and its filtered output. The claimed advantage
of this approach is that it assures edge-preserving
and structure-transferring.

(if) Numerical and statistical approaches (NSA)
perform multiplicative operations, create subtrac-
tiveandratiosimages. Widely used Boverytransform
(BT) resides in spectral modeling intended to at-
tain a normalization of the input bands via addition,
subtraction and ratio. The colour normalized (CN)
colour sharpening and local modulation of the MS
image by the ratio of the new intensity and initial
intensity components is developed to avoid colour
distortion inherent in BT [Vrabel, 2000].
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The principal component analysis (PCA) is
also a very popular tool. It implies the replace-
ment of the first PC by a high-resolution (e. g.
a PAN or a low spatial MS) image. The other ver-
sion of this technique is the substitution of the last
PC in the course of which spatial detail is injected
instead of replacement by either a PAN or a low
spatial MS image [Cakir and Khorram, 2008].

Provided the geometry (i. e. spatial feature) is
encompassed by PAN or low spatial MS image,
variational model using filtering and subsampling
allows considering local relationships between
neighboring pixels bringing about a noising effect
[Duran et al., 2014].

A purely statistical approach (Fuze Go™) to fuse
PAN and high spectral resolution images seeks
a least square fit between the gray hues of the input
image, and estimates the output values with statis-
tical methods.

(#if) The so called indusion technique also known
as modulation-based approach (MBA) uses a ra-
tio between the PAN and its low-pass filtered im-
age with a further modulation of a lower spatial MS
image. The latter can be upscaled by nonlinear
interpolation to attain better results [Khan et al.,
2008]. If instead of PAN a low spectral resolution
MS image is used, a modulation of the MS channel
with spatial detail assures a robust implementation
of this approach. The typical modulation-based
fusion algorithms are composite and encompass
Brovery [Vrabel, 2000], Smoothing Filter-based
Intensity Modulation (SFIM) [Liu, 2000], High-Pass
spatial Filter (HPF) [Chavez et al., 1991; Gangkof-
ner etal., 2008; Rong, 2014] and Synthetic Variable
Ratio (SVR) [Zhang, 1999] fusion algorithms (see
below in hybrid algorithms paragraph).

If within NSA the spatial detail is injected into
MS from PAN with the interband structure moad-
el [Garzelli and Nencini, 2005], the application
of the modulation transfer function of the imaging
system might be desirable as this permits to a cer-
tain degree avoiding spectral distortion.

(iv) Employing wavelets, curvelets, contourlets
and similar transforms [Starck et al., 2003; Choi
etal., 2004; Zang, 2009; Metwalli et al., 2014], multi-
resolution analysis (MRA) techniques decompose
input images into multiple channel images and find
their application for revealing high frequency spa-
tial detail. Multi-scale models are layered as a pyra-
mid whose base is the original image. Layering is
performed using the above transforms. The fused
image is obtained by the inverse transform. Otazu
et al. [2005] have extended this technique so that it
can be applied to any number of MS bands.

(v) To overcome the spectral incompatibility
of PAN and MS images, instead of inserting gray hue
values into MS spectral components, several alter-

native ways were exploited. They are subsumed un-
der the category of hybrid techniques. For instance,
the IHS transform [Hong and Zhang, 2009] converts
the original MS bands into IHS space. Then the fast
Fourier transform (FFT) [Nussbaumer, 1982] is
applied to both the obtained intensity spectrum
and the PAN images [Ling et al., 2007]. Further,
the former is low spatial frequency pass filtered,
while the latter is high spatial frequency filtered.
With the inverse FFT the thus processed MS images
are converted back into the spatial domain. Called
the Ehler fusion, this method eliminates the limita-
tions inherent in other methods even for multi-sen-
sor or multi-temporal images [Klonus, 2008].

To facilitate the optimization of both spec-
tral and spatial content of fused images, the IHS
transform in combination with, e. g., wavelet trans-
form (WT) is suggested [e. g. Hong et al., 2009].
MS data are transformed by IHS and the intensity
component is further decomposed by WT to reach
the same pixel size as PAN. This is followed by re-
placing the intensity wavelet decompositions by
the PAN decompositions.

The idea of parameter optimization in conjunc-
tion with low spatial frequency filter (LF) and em-
pirical adjustment of intensity image by means
of regressing MS and histogram-matched PAN was
exploited to derive a general hybrid algorithm [Choi
etal., 2013].

The comparison of different methods in order
to identify the best fusion algorithm is a challeng-
ing and doubtful task as the authors report on their
own algorithm efficiency applied to the solution
of the tasks they had to tackle. Moreover, it is
hardly appropriate to compare the fusion algorithm
efficiency when it is applied to different sensors,
different covered area, etc. Even if the studies are
similar, different choices of individual parameters
should be of significant essence. The same refers
to fusion quality assessment as the criteria chosen
by different workers are so diverse [Palubinskas,
2013; Pohl and van Genderen, 2015]. Undoubtedly,
the most successful image fusion algorithms must
be sensor-specific and adaptive. This accentuates
the problem of exploitation of data from a continu-
ously extending number of new sensors such as,
e. g., the satellite sensors recently put in the orbit
and planned for the years to come under the CO-
PERNICUS Program.

Below we present our original approach
to the optical-optical MS fusion. In what follows we
show that in the present form the developed proce-
dure is of the hybrid family: belonging ideologically
to the CS cohort of fusion methods (radiometric
intensity values are substituted by RGB values), it
exploits artificial neural networks (ANNs) to inject
high spatial resolution features into a higher spec-
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Fig. 1. An example of the ANN architecture

tral resolution image. The performance of this ap-
proach is illustrated for Michigan.

The fusion option selected by us (fusion
of the MSI MS images with the MODIS RGB image
of one and the same area and time of data acqui-
sition) was purported to provide a visually easily
perceivable result of fusion. A statistical assess-
ment of correspondence between remote sens-
ing reflectance, R _values inferred from the MODIS
and fused data at three wavelengths used to gen-
erate the RGB images was intended to illustrate
the fusion procedure adequacy.

2. Methodology description
ANN approach

The ANN approach is veritably sensor-specific
and adaptive. It is known that in pattern recognition
tasks it proved to be more powerful and efficient
in comparison to, e. g., linear and simple nonlinear
analyses [Haykin, 1998].

In application to image fusion, the ANN-based
method employs a nonlinear response function that
iterates many times in a special network structure
(exempilified in Fig. 1) in order to learn the complex
functional relationship between input and output
training data.

The input layer has several neurons, which rep-
resent the feature factors extracted and normalized
from image A and image B. The function of each
neuron is a sigmoid function given by:

Fx) = —
1+e™™

(1)

Hidden Layer

Second
Hidden Layer

Output
Layer

MODIS-Aqua
data

The hidden Ilayer has several neurons
and the output layer has one neuron (or more neu-
rons). The jith neuron of the input layer connects
with the jth neuron of the hidden layer by weight
W,. The weight between the j-neuron of the hid-
den layer and the tth neuron of the output layer is
V/ (in the considered application of the ANN-based
algorithm t=1). The weighting function is used
to simulate and recognize the response relationship
between features of the fused image and the cor-
responding feature from the original images (image
A and image B).

The ANN fusion model can be presented
as follows:

Y= 1 (2)

1+exp[—(27:1fof - Y)}

where Y = pixel value of the fused image export-
ed from the neural network model, g =number
of nodes in the hidden layer (s) (we employed two
hidden layers with g = 14 + 2), Vj = weight between
the jth hidden node and the output node t (t=1),
y = threshold of the output node t, Hj = exported
values from the jth hidden node:

]
H:1+exp[—(2:1l/v,.ja,—6jﬂ ©

where W, as above is the weight between the ith
input node and the jth hidden node, a,=val-
ues of the ith input factor, n = number of nodes
in the input layer (n=13 in the ANN architecture
used in the present work), 9/.= threshold of the jth

hidden node.
Q.



In the first step of ANN-based data fusion, two
registered MS images are decomposed into sever-
al blocks/windows with the size of M and N. Then,
features of the corresponding blocks/win-
dows in the two original images are extracted,
and the normalized feature vector incident to neu-
ral networks can be constructed. The features used
here to evaluate the fusion effect are normally spa-
tial frequency, visibility, and edge. The next step
is to select some vector samples to train neural
networks. An ANN is a universal function-approx-
imator that adapts to any nonlinear function de-
fined by a representative set of training data. Once
trained, the ANN model can remember the learned
functional relationship and eventually be used for
further calculations. It is exactly because of these
reasons that the ANN concept has been adopted
to develop strongly nonlinear models for multiple
sensors data fusion.

The ANN-based fusion method exploits the pat-
tern recognition capabilities of artificial neural
networks. The learning capability of neural net-
works makes it feasible to customize the image fu-
sion process. Many of applications indicated that
the ANN-based fusion methods had more advan-
tages over traditional statistical methods, specifi-
cally, when input multiple sensor data were incom-
plete or noisy. It often serves as an efficient tool at
a decision fusion level for its self-learning capabil-
ity, especially in land use/land cover classification.
In addition, the multiple inputs — multiple outputs
framework makes it a useful approach to fusion
of high dimension data, such as long-term time-
series or hyperspectral data.

Fuzzy k-mean classification algorithm for
bottom type identification

The fuzzy k-means classification is based
on clusterization, i. e. the bringing together of ob-
jects into groups/clusters based on the likeli-
hood of features for the objects of one group
and unlikeness between other groups. An impor-
tant advantage of such algorithms is that they do
not rely on the traditional assumptions for statisti-
cal methods: they can be employed under condi-
tions of a near-complete absence of information
onthetype of data distribution. For such algorithms,
the input information for clusterization is the matrix
of observations (X) with the size M x N, where M is
the number of rows, corresponding to the number
of objects and N is the number of characteristics.
Fuzzy clusters are described by a matrix of fuzzy
partitioning/fragmentation [Pintore et al., 2003]:

Folw)  moclo]

4
k=1,....,.M i=1,...,¢c ()

where the kth line assigns the degrees/weights
with which the object (x,,, x,...x, ) be-
longs to clusters A, A,..., A,. The matrix F de-
scribes the degree of belonging to a cluster and,
in the case of fuzzy partitioning, the given object
belongs to the cluster and the degree to which this
belongingness can vary is assessed within the in-
terval [0,1]. The conditions of fuzzy partitioning are
formalized as follows:

Zf;”’ﬂ' =1

O<Ef:1,uk,<N, i=1,..,c

k=1,..,M
(5)

Fuzzy partitioning permits to easily solve
the problem related to objects located at the in-
terface of two clusters: it is done through attribut-
ing to them the degree of belonging equal to 0.5.
The intrinsic drawback of fuzzy partitioning stands
out when dealing with objects distanced from
the centers of all clusters. Distanced objects have
little in common with each of the cluster, so that
intuitively it seems reasonable to attribute to them
low degrees of belonging. However, according
to the condition stipulated by the equation (6),
the sum of their degrees of belonging is the same
as it is for the objects, located close to the cluster
centers, i. e. equal to 1. To overcome this draw-
back, it is possible to resort to partitioning based
on plausibility. It requires the fulfilment of a sole
condition: an arbitrary object from X must belong
to at least one cluster. Such partitioning is achieved
through setting a less rigorous condition (see
equation (5)).

For the assessment of the quality of fuzzy parti-
tioning the following criterion of departures is used:

SO (w)" V= X, (6)

i=1 k=1
N

N
where V= ()" x, /> (1,)" are the centers
k=1

k=1
of fuzzy clusters, me [1,o°) is the exponential
weight determining the “fuzziness”, overlapping
of clusters.

There is a considerable number of algorithms
of fuzzy clusterization based on the minimiza-
tion of the criterion in equation (3). Developing
matrix F of fuzzy partitioning with a minimal value
of the criterion in equation (5) is the task of a non-
linear optimization, which in turn can be resolved
making use of different methods. The frequently
used one is the algorithm of fuzzy k-means based
on the Lagrangian method of non-determined
factors/multiplies [Zimmermann, 2001, see also
Shahraiyni et al., 2009]. The assessment of the ac-
curacy of this algorithm dedicated to mapping
of L. chlorophorum is reported in [Morozov et al.,
2010].
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3. Lake Michigan: a concise general
description

Due to the nature of its formation (initially a pris-
tine melt water body), and the resulting morphom-
etry, thermal regime, watershed soil and geochem-
istry of Lake Michigan (41°35’N — 46°N; 85°W —
88°W), this water body was originally oligotrophic
[Chapra et al., 1981; Gillespie et al., 2008].

It still remains mostly as such due to its gla-
cial heritage, although there are indications that
the lake’s trophic status should now be defined as
oligo-mesotrophic [Mida et al., 2010]. This is be-
cause Lake Michigan has been subjected to exter-
nal pressure produced by climate warming (water
temperature growth in upper layers), atmospheric
fallouts (phosphorus deposition) and human ac-
tivities (input of phosphorus and other pollutants,
including toxic ones, through sewages and atmo-
spheric deposition). At the same time, during
the second part of the previous century the lake
became an arena of ballast water mediated in-
troduction of invasive species such as quagga
and zebra mussels, which act as water filterers.
As a result, they damage the lake ecosystem via
disrupting some intrinsic trophic interactions but
also increase the water transparency (e. g. at
the Sleeping Bear Dunes the water bottom vis-
ibility depth has increased from ca 2.5 m in 1970
up to 20 m in 2010), let more solar light reach
the bottom in shallow coastal zones and stimulate
the growth and increase the areal extent of macro-
phytes [Nalera and Schloesser, 2014].

Location of the target shallow area in Lake
Michigan

The fusion methodology developed was ap-
plied to the lake’s eastern coast, and more
specifically, a colocation called “Sandy Bear
Dunes” (44°50’N, 88°W). It has a sandy beach,
and the bottom depths not exceeding (https://
www.ngdc.noaa.gov/mgg/greatlakes/michigan.
html). The bottom substrate is predominantly san-
dy with occasional inclusions of spots of macro-
phyte stands with Cladophora as the main species
[Mida et al., 2004]. Reportedly, the offshore extent
of macrophytes along the coastal zone generally
does not exceed 5-10 m, although along the north-
ernmost periphery of the lake the standing stocks
are found at depths nearing 20-25 m [Shuchman
etal., 2013].

Presently, the phytoplankton communi-
ty comprises four major groups: blue-green
and green algae, diatoms and flagellates
(http://www.glerl.noaa.gov/pubs/brochures/
foodweb/LMfoodweb. pdf).

4. Input and output data description

We employed the radiometric data from two
satellites, viz. Sentinel-2 and MODIS-Aqua. Sen-
tinel is the name for a family of environmental re-
mote sensing platforms launched and also waiting
for launching under the ESA COPERNICUS Pro-
gramme (www.copernicus.eu).

For our purposes, data from only one satellite
of this series, viz. Sentinel-2a, were available so far
(below referred to as S-2a). The S-2a platform ac-
commodates the Multispectral Imager (MSI), which
provides data at high spatial resolution (10-60 m)
in several spectral channels in the visible. However,
the number of spectral channels in the visible (only
four) and their placement (Table) are, respectively,
rather limited and not optimally suited. These defi-
ciencies preclude the use of this sensor for efficient
retrieval of water quality parameters in situations
of optically complex or shallow waters. Thus, in our
studies S2a acted in the capacity of a sensor with
high spatial butlow spectralresolution (Table), whose
data were to be fused with a sensor providing higher
spectral resolution although at a rather coarse spa-
tial resolution. S-2a was launched on June 23, 2016,
and its orbit was adjusted to assure the revisit time
of 10 days. In the case of Lake Michigan, the time
of this satellite overflight was close to 5 p. m. Satel-
lite S-2b was launched on 07.03.2017 and presently
the data from this satellite are yet unavailable.

MSI data were from the L1C level (https://
earth.esa.int/web/sentinel/user-guides/sentinel-
2-msi/processing-levels) [i. e. not atmospherically
corrected] in 13 spectral channels (Table, A). Fur-
ther on, these L1C data were atmospherically cor-
rected (see section Input Data Processing).

These data were fused with the data from MO-
DIS-Aqua available at a much higher spectral reso-
lution (6 bands in the visible and 1 band in the near
IR [865 nm]), but at a lower spatial resolution (with
1 km in the visible) (Table, B).

Satellite level 1 data processing

Atmospheric correction and image preparation
for the fusion procedure

a) S-2a data: we applied the ESA algo-
rithm of atmospheric correction Sen2cor
(http://step.esa.int/main/third-party-plugins-2/
sen2cor/). S-2a data are provided by ESA in gran-
ulessizing 100kmby 100 km) (https://earth.esa.int/
web/sentinel/user-guides/sentinel-2-msi/prod-
uct-types). The granules are to be further mosa-
icked, and latitudinally-longitudinally reprojected
(EPSG:4326 — WGS84). For fusion, S-2a data were
reduced to a 60 m spatial resolution per pixel.
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Spectral channels: location and spatial resolution for S-2a (A) and MODIS-Aqua (B)

A B
Band # Central Bandwidth, nm Band # Central Bandwidth, nm
wavelength, nm wavelength, nm
1 443 (60 m) 27 8 412 (1 km) 405-420
2 490 (10 m) 94 9 443 (1 km) 438-4428
3 560 (10 m) 45 10 488 (1 km) 483-493
4 665 (10 m) 38 1 531 (1 km) 526-536
5 705 (20 m) 19 1 645 (1 km) 620-670
6 740 (20 m) 18 14 678 (1 km) 673-683
7 783 (20 m) 28
8 842 (10 m) 145
8A 865 (20 m) 33
9 945 (60 m) 26
10 1375 (60 m) 75
1 1610 (20 m) 143
12 2190 (20 m) 242

b) MODIS-Aqua data

Our analysis of the spectral curvature of remote
sensing reflectance, R (A) [which is the upwelling
spectral radiance above the water-air interface,
L (0) normalized to the downwelling spectral irradi-
ance, E (0) at the same level [e. g. Jerome et al.,
1996] revealed that the MODIS-Aqua atmosphe-
ric correction frequently results in negative values
of R (A) in the blue part of the spectrum. It implies
that the standard atmospheric correction is very in-

accurate, and such data could not be used for fur-
ther processing.

To overcome this problem, we applied
the MUMM code based on the GW94 AC. https://
www.osapublishing.org/vjbo/fulltext.cfm?uri=oe-
21-18-21176&id=260880#g001). The applica-
tion of the MUMM correction procedure signifi-
cantly eased the problem with negative values
of R in the shortwave region of the visible spec-
trum. Performance of the MUMM procedure

Data accumulation

I Sentinel - 2a L1 OLCI | Atmospheric

correction (sen2cor)

]

| MODIS-Aqua L1A.GEO |~ MODIS-Aqua L1A |

I
|

| MoDIS-Aqua L1B |
]

[  Sentinel-2at2a |
4! Downscaling I | MODIS-Aqua L2A I
4' Reprojection I Geolocation I
4' Masking I Reprojection I

Sentinel

-2alL2A

| moDIS-Aqua L2A |

|
il

Preparing of training vectors

l<_

I Neural network training |
1}
|

Processing of new image f
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Y v y
[ BoreaL ] [ BOREALI-OSW f— Bottom type detection |
' v
b -l CPA concentrations | CPA processing
Analysis

Fig. 2. Flowchart of S-2 and MODIS imagery processing
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of atmospheric correction, is effected through
the employment of the SeaDAS processing
code (https://seadas.gsfc.nasa.gov/) extended
for working with ocean colour data (OCSSW),
i. e. images were downloaded from https://
oceancolor.gsfc.nasa.gov/ site and then subjected
to geolocation (L1B level). Thus, MODIS L2A level
spectrometric data were obtained.

5. S-2a and MODIS-Aqua data fusion
procedure

To prepare MODIS-Aqua L2A images to fusion
they were reprojected and synchronized (in terms
of geolocation) with the paired S-2a images.

ANN architecture

Our ANN consists of four layers of neurons
(Fig. 1). The first layer encompasses 13 neurons
accommodating R values from the S2a 13 spec-
tral channels (Table, A). Two hidden layers have
14 and 2 neurons. The third layer consists of only
1 neuron yielding the value of R at each of the
MODIS spectral channels, i. e. 412, 443, 488, 531,
645 and 678 nm (Table, B). Thatis, we develop sep-
arate NN for each MODIS spectral channel. The de-
velopment of NNs with only one output neuron could
be performed relatively fast: the computing time
required for training the NNs for the fusion of one
pair of MODIS-Aqua and S-2a images depends
on the computer power, but in our case, it took one
hour. Thus, it makes the developed method quite
practical. Training of each NN was conducted until
the RMSE reaches the value of 10-15 %.

Thus, the established values of S-2a R at
the MODIS 6 wavelengths permit to obtain the de-
sired information at the MODIS spectral resolution
and S-2a high spatial resolution, and hence attain
the aim of data fusion.

6. Results of S-2a and MODIS-Aqua data
fusion

RDG images

Visual analysis of paired SMI and MODIS data
has shown that for the entire 2016 growing season
only five pairs could be used for fusion. The dates
of overflights are 09.05; 05.076; 26.07; 15.08;
04.09. The time difference of the five overflights did
not exceed 2.5 hours. Figure 3 illustrates the spa-
tial distribution of RGB images generated from
MODIS-Aqua and fused MODIS-Aqua - S-2a data
for the above dates.

The RGB images developed from the fused S-2a
and MODIS-Aqua data exhibit a logical sequence

of phases of phytoplankton development in Lake
Michigan. Indeed, the green areas (corresponding
to enhanced concentrations of phytoplankton chlo-
rophyll) stand out twice in the year, viz., in spring
and early autumn (i. e. 09.05 and 15.08), which is
in complete conformance with vernal and autumnal
phytoplankton outbreaks in Lake Michigan [Shuch-
man et al., 2006; their Fig. 6].

Application of the BOLEALI-OSW algorithm

The BOLEALI-OSW algorithm is described in de-
tail elsewhere [Korosov et al., 2017]. It is based
on both the Levenberg-Marquardt multivariate pro-
cedure [Press et al., 1992] and the theory of light
transfer in semi-infinite media [Maritorena et al.,
1994]. Within our approach, the remote sensing
reflectance R, (A) is presented as a sum of two
components originating from the light interactions
within the water column, R_ .. and the bottom.
The optical influence of the latter is determined by
the bottom substrate spectral albedo, A (A). Thus,
the resultant (total) spectral remote sensing reflec-
tance, R, can be formalized as follows:

Rror (A+0) = R, pen[1— exp(—2KH)] + Aexp(—2KH)
Q

where +0 indicates the air-water interface,
K = spectral coefficient of upwelling and down-
welling light attenuation in the water column,
H = bottom depth, Q = ratio of the upwelling radi-
ance to downwelling irradiance at level +0.

The fused ocean color data were processed with
the BOREALI-OSW algorithm to retrieve the con-
centrations of phytoplankton chlorophyll, total sus-
pended matter and cdom.

Fig 4 illustrates the spatial distributions of phy-
toplankton chl concentrations for the above five
dates as obtained from the fused MODIS-Aqua
and S-2a data. The paired plates in Fig. 4 explicitly
show the advantage of the fusion procedure over
the results from solely MODIS-Aqua.

The adequacy of the retrieved concentrations
could only be assessed through a comparison
with in situ data, but the latter were unavailable for
us. Nevertheless, the retrieved chl and tsm con-
centrations comply well with the data reported for
this part of the lake and this time range [Korosov
etal., 2017].

(7)

Mapping of bottom type

Mapping of bottom type was performed for
an area called Pyramid Point within the afore-
mentioned Sandy Bear Dunes site. The k-means
technique concisely described above was applied
to bottom substrate classification. Spectra of R
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Fig. 3. RGB images generated from MODIS-Aqua data (a) and fused MODIS-Aqua-S-2a data (b)
for 09.05; 05.076; 26.07; 15.08; 04.09 (presented in the top to bottom sequence)
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Fig. 5. Spatial distribution of bottom types (classes 1-3) as obtained for the Pyramid Point
making use of the k-means and fusion techniques.

values from the fused data (at 60 m resolution)
were partitioned into three classes: sand, chara
stands (charais a genus of charophyte green algae
in the family Characeae known to be common for
the coastal area of Lake Michigan [Shuchman et al.,
2013]), and some sandy substrate either sparsely
covered by macrophytes (chara or cladophora)
or slightly silted. The area was confined to depths
not exceeding 15 m.

The clusterization thus performed permitted
to produce a map of bottom type heterogeneity at
a 60 m spatial resolution (Fig. 5).

The above-described bottom type classification
reveals that the area adjacent to the coast is sandy
(it is characterized by the highest bottom albedo).
Further off-coast, the areawith adepth of 10-15mis
covered by chara stands. The intermediate area be-
longs to the intermediate class, although it contains
sandy spots as well as spots covered by submerged
vegetation stands. These features explicitly indicate
that the spatial heterogeneity of the area ascribed
to class 2 is not due to depth changes, but is driven
by changes in the bottom albedo.

Concluding remarks

Thus, summing up, we have developed and re-
alized in a computer code our own method of ocean

color data fusion. The fused images were pro-
cessed with the BOREALI-OSW algorithm to yield
the CPA concentrations in the target optically shal-
low area of Lake Michigan. The retrieved concen-
trations comply well with the respective values typi-
cal of this lacustrine area.

We have investigated the possibility of employ-
ing the fused data for retrieving the bottom type.
This tentative bottom type classification is rather
rough as only three classes were presumed. In real-
ity the bottom cover might be more heterogeneous
if the respective mosaic elements are smaller than
the spatial resolution of the fused radiometric data.

The attained results strongly suggest that
the developed algorithm can be successfully
used for fusion of data from Sentinel-2 and Senti-
nel-3 because Sentinel-3 is highly akin to MODIS-
Aqua in terms of the spectral and spatial resolution
[Donlon et al., 2012].

Understandably, our fusion algorithm can be
applied to data of the above sensors not only
to generate RGB images of higher spatial resolu-
tion but also R values in the Sentinel-3 spectral
bands in the visible. It will require training of a larger
number of NNs (according to the number the Sen-
tinel-3 spectral bands in the visible). Because
of this, the approach proposed might appear at
first sight rather cumbersome. But the relative sim-
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plicity of the method (as compared to those we dis-
cussed in the review section) and reasonably man-
ageable computing time can successfully balance
this seeming drawback.

We envisage that employment of S-3 data will
also be very beneficial: sooner or later MODIS-
Aqua will cease its performance, while S-3 (with
nearly the same radiometric characteristics as
MODIS Aqua) will, supposedly, last at least for
the next decade.
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