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Lake Michigan (LM) is generally an oligotrophic clear water body, especially in its littoral
zone where ecology-relevant processes unfold due to a variety of natural and anthropo-
genic forcings arising from the watershed. However, the bottom influence there is strong
enough to contaminate the at-satellite signal, thus impeding the remote sensing of water
quality parameters within the coastal zone. A new bio-optical retrieval algorithm, based on
a forward radiation transfer model, LM specific hydro-optical model and the multivariate
optimization technique are developed for operational retrieval from satellite data of water
quality parameters in lake’s optically shallow areas. As a result, the concentrations of ma-
jor Color Producing Agents (CPAs), viz. phytoplankton chlorophyll, total suspended mat-
ter and yellow substance could be retrieved in transparent coastal waters with a variety of
bottom cover types: sand, silt, stands of Chara, and Cladophora, and limestone pebble.
The sensitivity of both forward and inverse models was tested for LM hydro-optical condi-
tions. By means of forward simulations it is shown that at very low concentrations of CPAs
(lessthan 0.01 in respective units) the optical influence of the bottom becomes indiscern-
ible if the bottom depth, H approaches 20 m. In waters loaded with higher quantities of
total suspended matter (TSM) and phytoplankton chlorophyll, CHL, the bottom influence
ceases at H ~ 10 m. The noise sensitivity has shown that the shallower the water column
and higher bottom albedo the more significant is the ensuing error in CPA retrievals. E. g.
for a sandy bottom and water column of 5 m, a 10 % error in determining of albedo leads
to a 18 %, 28 % and 10 % error in retrieving, respectively, CHL, TSM and colored dis-
solved organic matter, CDOM.

Keywords: optical remote sensing; spectral reflectance; attenuation; surface albedo;
optically shallow waters; limnology; Lake Michigan.
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A. A. Kopocos, [. B. NMo3zgHakos, P. LLyxmaH, M. Caiiepc, P. CoyTtenn,
A. B. Moucees. BUOONMTUYECKMUA AJITOPUTM BOCCTAHOBJIEHUA
NMAPAMETPOB KAYECTBA BOAbl AOJiI9 ONTUYECKU MEJIKUX BOpL
O3EPA MUYUTAH. I. OMUCAHUE MOAEJSIU U OLLEHKA EE TOYHOCTW/
HAOEXHOCTU

03epo MuuunraH 0THOCUTCS K 0IMrOTPODHOMY TUMy BogoemMoB. CuibHee BCero aTo npo-
ABNSeTCS B NPMOPEXHON 30HEe, FAe rMApPOSIOrMYecknii pexmnm Bog, GopmMmpyeTcs nog,
[encTBneM pasnnyHbIX NPUPOOHbIX M @HTPOMOreHHbIX GakTOpOoB, NPOTEeKaloLWMX Ha BO-
nocbopHom TeppuTopun. BnnsiHne aHa [OCTaTOYHO CUJIBHO MCKaXaeT PerncTpmpyemMsilii
CMYTHMKOM CUIrHas, NPensaTCTBYS BbINMOSHEHNIO OUCTAHLUMOHHOIO 30HAMPOBaHUS napa-
METPOB KayecTBa BOAbI B 9TOW YacTu o3epa. [N n3BnevyeHmst 3 CyTHUKOBbIX CHUMKOB
napamMeTpoB kayecTBa BOAbl B ONTUYECKM MESIKMX paioHax o3epa MuuuraH Obin paspa-
©60TaH HOBbIM BuoonTMyecknii anropmutm. OH OCHOBaAH Ha MOAENN NMEePeHOCca N3NyYeHUs,
rmopoonTMyYeckor mogenn o3epa MuymraH 1 MHOroMepHoOM ONTUMM3auun U NO3BONSET
nosy4yaTb OLLEHKY KOHLIEHTPALMN BCEX OCHOBHbIX OMTMYECKM akTUBHbIX BewlecTs (OAB)
B 0061aCTaX C pas3MyHbIM TUMNOM AHAa: Necok, un, makpodutsl (Chara nnu Cladophora)
M N3BECTHSKOBAs rasibka. TeCTUpPOBaHWE anropmMTtMa rnokasaso, YTO NMpu O4YeHb HU3KUX
koHueHTpaumsax OAB (meHee 0,01 B COOTBETCTBYIOLLMX €ANHNLAX UIBMEPEHUS) ONTUYEC-
KO€e BNIMSIHME [Ha CTAHOBUTCS HE3HAUYNTENbHbIM Npu rnybuHe okono 20 meTpoB. B Boae
c 6onee BbICOKMMM KOHLIEHTPaUMsaMM B3BELUEHHOro Bellectsa (BB) v xnopodpunna
B/INSIHME OHA CTAHOBWUTCS HEpPasnnyMmbiM npu rnybuHe ~10 M. TecTupoBaHWe 4yBCT-
BUTENIbHOCTM anropntMa K LymMy nokasasio, 4TO YeM MeHbLLE TOJILLMHA UCCneayemMoro
BOOHOro ctonba 1 4em Bbille anbbeno AHa, TeEM Bhbile NMOrpeLHoCTb BOCCTaHOBEHUS
koHueHTpauuin OAB. Hanpumep, B cilydae necyaHoro gHa v riybuHbl 5 M norpeLHocTb
B 10 % npu oueHke anbbeno aHa NpuBoauT K oumbkam B 18, 28 1 10 % npu BOCCTaHOB-
neHnn xnopodunna, BB 1 okpalleHHOro pacTBOPEHHONO OPraHN4Yeckoro BeLecTBa co-
OTBETCTBEHHO.

Kniouyesble cnoBa: AMCTaHUMOHHOE 30HAMPOBAHME; CNEeKTPasibHOE OTPaXeEHUE;

anb6e,u,o AHa; onTn4eCckn MmeJikme Boabl; IMMHOJIOrNA; 03epo MwuuuraH.

Introduction

In the case of Lake Michigan, remote sensing
encounters a serious methodological problem.
With the exception of some bays and specific ar-
eas within the coastal zone, this Great Lake is an
oligotrophic water body with optically clear waters
[Effler et al., 2013]. Due to high water clarity, the
bottom influence exerted on the light coming out
from beneath the water surface is strong enough to
contaminate the at-satellite signal [Gordon, Brown,
1974]. This is bound to impede the remote sensing
of bulk water quality parameters within the coastal
zone. The above problem is encountered in satel-
lite studies of other littoral areas in the other four
Laurentian Great lakes as well as many aquatic en-
vironments throughout the world’s oceans. A vari-
ety of methodological approaches have been ex-
ploited to meet this challenge as described below.

The inverse problem solution (IPS) in the case of
optically shallow waters consists in untangling the
light signals originating from water column back-
scattering and bottom reflection. It offers a very im-
portant potential to retrieve the state and dynamics
of both bottom topography [Hu, 2008], and bottom
cover type [e. g. Hu et al., 2003; Dekker et al., 2011]

due toriver- and land-runoff [Hu et al., 2004, 2005],
and climate change [Shuchman et al., 2006].

The distribution of seagrass and macrophytes
across the bottom reflects the trophic state and
quality of nearshore waters. At the same time, it is
controlled by attenuation of sun light propagating
through the water column due to water Color Pro-
ducing Agents (CPAs) such as phytoplankton, dis-
solved organics, and tripton. In many applications,
those two aspects of the IPS develop into either
separate or combined tasks of remote sensing of
optically shallow water bodies depending on the
specific aims of surveillance.

The history of investigation of potentials of
ocean color data to determine bottom depth and
benthic cover types as well water constituents over
large optically shallow areas exceeds several de-
cades. Starting from predominantly empirical ap-
proaches [Lyzenga, 1978; Clark et al., 1987; Phil-
pot, 1989], IPS methods have gradually developed
into a specialized area of research.

In this study of Lake Michigan’s peripheral zone,
we develop a multiband Bio-Optical REtrieval AL-
gorlthm for Optically Shallow Waters coined BO-
REALI-OSW. The algorithm retrieves CPA concen-
trations from remote sensing reflectance in clear

@



Optically Shallow Water of the| — - 44 o s o siowies
Great Lakes @l =
e = & {,
o S, i % LN
% o 1 3”"‘: }
- ;4
A, -~ s |: 2 i
—— ~ h F_‘ .
i ¥ _
e 2 T ’?; . A
= ol \ R
. r's { :
k
~ 5
' .! b " E Legend
k- i 3 . I ontically Shallow Water
: \\ & B I Canada :
f - us. A

Fig. 1. Optically shallow water of the Great Laurentian Lakes

waters for a variety of bottom depths and bottom
types. It is an extension of the BOREALI algorithm
that has been previously developed for optically
deep and turbid waters, went through thorough
verification campaigns [Korosov et al., 2009] and
proved its efficiency for a wide variety of water bod-
ies including the North European and North Ameri-
can Great Lakes, among the latter — Lake Michigan
[Shuchman et al., 2006].

Importantly, the BOREALI algorithm permits si-
multaneous retrieval of the concentrations of three
ecologically important water quality constituents,
viz. phytoplankton chlorophyll, suspended mine-
rals and dissolved organic matter. The ability of the
BOREALI algorithm to differentially provide quanti-
tative information on these three water constituents
makes its use particularly valuable for limnologists
and water management agencies in their studies
of ecological status and its dynamics driven by an-
thropogenic, invasive species and climatic forcing.

Due to the legacy of the BOREALI algorithm, the
BORREALI-OSW algorithm also permits to simulta-
neously retrieve, in addition to phytoplankton chlo-
rophyll content, the concentrations of suspended
minerals and dissolved organic matter as opposed
to those algorithms that retrieve just total suspend-
ed matter, or non organic suspended matter and
absorption of colored dissolved organic matter
[e. g. Dekker et al., 2011]. This distinction is very
important for identification of the nature and inten-

sity of inputs of substances into the coastal zone
with the river- and land- runoff in order to get a bet-
ter insight into the mechanisms of the ecosystem
forcing. Itis also valuable for ecological simulations
as the models do not operate with total suspended
composition or absorption of yellow substance, but
with specific water quality constituents.

The distinguishing features of the BOREALI and
BOREALI-OSW algorithms are, first and foremost,
that they (i) require a manageable number of in-
put parameters, (ii) are extendable to any aquatic
environment, for which a dedicated hydro-optical
model is available, (iii) do not require any prelimi-
nary tuning and are ready for use. BOREALI-OSW
can also yield spectral values of K, (A) in the water
column over the bottom because it retrieves the
concentrations of water color producing agents
and uses the respective specific absorption and
backscattering coefficients (see below eqgs. 7 and
8, section 4). Finally, they are truly near-opera-
tional. The BOREALI-OSW algorithm employs the
Levenberg-Marquardt multivariate optimization
procedure, and uses in this study the recently es-
tablished hydro-optical model of Lake Michigan
[Shuchman et al., 2013a].

The BOREALI-OSW algorithm has the poten-
tial to be a very useful tool in studying littoral eco-
systems throughout the entire Laurentian Great
lakes. Figure 1 is a map of optically shallow wa-
ter (red areas) in the five lakes where the use of
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BOREALI-OSW is applicable. The majority of the
areas mapped are areas of high concern from a re-
source management perspective.

This paper addresses the methodology of the
elaborated tool, the assessment of its sensitivity
to the hydro-optical conditions and types of sub-
strates inherent in the coastal zone of Lake Michi-
gan, as well as the accuracy of retrieval of the
desired parameters. To test its performance, the
algorithm is applied to simulated, field-measured
and MODIS data. We show that its accuracy is su-
perior to the standard OC4 algorithm [O’Reilly et
al., 2000]. It can also be applied to other present
and future multispectral spaceborne sensors such
as NPP/VIIRS and Sentinel 3/OLCI.

Lake Michigan: a concise general description

Lake Michigan (41°35'N - 46°N; 85°W -
88°W, Fig. 2), like the four other Laurentian Great
Lakes of North America, began to form at the end of
the last glacial period approximately 10,000 years

ago. Due to the nature of its formation (initially
a pristine melt water body), morphometry (the av-
erage depth is 85 m, the water volume is 4,900 km?®
second largest by volume), thermal regime (evenin
summer, the water temperature at the bottom does
not exceed 5 °C) and the watershed soil geochem-
istry [Gillespie et al., 2008] the lake was originally
oligotrophic [Chapra et al., 1981].

It still remains mostly as such due to its glacial
heritage, although there are indications that the
lake’s trophic status should now be defined as oli-
go-mesotrophic [Mida et al., 2010]. This is because
Lake Michigan has been subjected to external pres-
sure produced by climate warming (water tempera-
ture growth in upper layers), atmospheric fallouts
(phosphorus deposition) and human activities (in-
put of phosphorus and other pollutants, including
toxic ones, through sewages and atmospheric de-
position) as well as introduction of invasive species.

The anthropogenic impact proves to be es-
pecially pronounced in the southern part of Lake
Michigan: there are the most urbanized areas in the
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Fig. 2. Lake Michigan bathymetry
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Table 1. Combinations of concentrations used in
numerical experiments. Water type labels in the first
column are referred to in the rest of the text

CCHL’ CTSM’ aCDOM’
Water type label mg ms gm? m
Clear water 0 0 0
CHL-dominated 1 0 0
clear water
TSM-dominated 0 0.2 0
clear water
Slightly turbid water 1 0.2 0.05
Turbid water 2 0.5 0.1
Very turbid water 5 1 0.5

Great Lakes system, whereas the northern part is
less developed, sparsely populated with the excep-
tion of Green Bay, which is the recipient of waters of
the Menominee River flowing through the Fox River
Valley and carrying the wastes from the world’s larg-
est concentration of pulp and paper mills.

Some 186 invasive species have come to the
Great Lakes, and among them are the quagga and
zebra mussels entering the lakes in ballast water.
Apart from damaging the lake ecosystem via dis-
rupting some intrinsic trophic interactions, the mus-
sels, as water filterers, increase the water transpar-
ency (e. g. at the Sleeping Bear Dunes the bottom
visibility depth has increased from ca 2.5 m in 1970
up to 20 m in 2010) and thus let more solar light
reach the bottom in shallow coastal zones [Nalera,
Schloesser, 2014].

Phosphorous availability and mussels driven in-
creased water clarity have resulted in the invigora-
tion of benthic flora and macrophytes/submerged
aquatic vegetation (SAV) as well as its proliferation
to greater depths. (In Lake Michigan, Cladophora
is the dominant SAV [Greb et al., 2004]).

Reportedly, the offshore extent of SAV gen-
erally does not exceed 5-10 m, although along
the northernmost periphery of the lake the SAV
standing stocks are found at depths nearing 20—
25 m [Shuchman et al., 2013b].

Presentlythe phytoplanktoncommunitycompris-
es four major groups: blue-green and green algae,
diatoms and flagellates (http://www.glerl.noaa.gov/
pubs/brochures/foodweb/LMfoodweb. pdf).

Methodology
Semi-empirical forward simulation
Hydro-optical model
The employed hydro-optical model is a set of
the inherent optical properties (IOPs): spectral val-

ues of CPA specific (i. e., normalized to a respec-
tive CPA concentration) spectral coefficients of ab-

sorption, a* and backscattering b*, of phytoplank-
ton (CHL), and total suspended matter (TSM). The
spectral influence of colored dissolved organic
matter (CDOM) was confined in the model to its
absorption measured in m'.

Due to the additive nature of IOPs, the bulk water
inherent properties can be expressed as follows:

a(/\) = aw + aEJHLCCHL + a';'SMCTSM + aéDOMCCDOM ( 1 )

bb (A)= bbw + b;CHLCCHL + b;TSMCTSM (2)

where w stands for water per se. In the present
study, the hydro-optical model developed specifi-
cally for Lake Michigan was employed [Shuchman
etal., 2013a].

Remote sensing reflectance

In our study we operate with the subsurface
spectral remote sensing reflectance, R_,, which
is the upwelling spectral radiance just below the
water-air interface, L(-0) normalized to the down-
welling spectral irradiance, E(-0) at the same level
[e. g. Jerome et al., 1996]. The algorithm for com-
puting R, for optically shallow waters is based on
the equation suggested by Maritorena et al. [1994]
assuming that the coefficients of the upwelling and
downwelling irradiance attenuation are equal and
do not change with depth, H:

R(—O,H)=R_+(A—R_)exp(—KH) (3)
We can rewrite eq. 3 in the following form:
R(—0,H)=R_[1—exp(—2KH)]+ Aexp(—2KH) (4)

The diffuse and remote sensing reflectance
above surface (R ) are interrelated through the fol-

lowing relationship [Bukata et al., 1995]:
R(A+0)=R(A-0)/Q (9)

where Q is the ratio of the upwelling irradiance be-
low the water surface to the upwelling nadir radi-
ance below the water surface. Hence, eq. 4 can be
converted into the equation for total remote sens-
ing reflectance R ., by dividing both parts of the
equation by Q:

R sror (A,+0)= R speer[1— exp(—2KH)]+
+Aexp(—2KH)/Q
where R .. is the remote sensing reflectance of
optically deep waters, K is the light attenuation co-
efficient, A is the bottom albedo and H is the depth.

The value of K can be calculated using the Kirk
[1984] parameterization:

K =(1/u,)[a* +ab(0.473u, —0.218)]"2  (7)

where y, is the cosine of the solar zenith angle
after refraction at the air-water interface, a is the

(6)
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total absorption (eq. 1) and b is the total scattering
[Bukata et al., 1995]:

b= bﬂ + o CHL + CCHL + bbTSMCTSM (8)

b
0.5 0.011 0.08

Remote sensing reflectance for deep waters is
computed from the subsurface remote sensing re-
flectance (R ) using semi-analytical formula sug-
gested by Lee et al. [2002]:

0.5R,

R speer A, +0) :T_:j (9)
where R is calculated using the parameterization
suggested by Albert and Gege [2006] for a wide
range of summer time sun elevation angles:

R, (A—0)=0.512G-
(14 4,6659G — 7.8387G? + 5.4571G°)-

(1+0.1098 / ,)(1+0.4021/ u,)

where G = b, / (b, + a) and u, is the cosine of the
viewing nadir angle just below the surface. Ulti-
mately, total subsurface remote sensing reflec-
tance (R ;) is calculated from total remote sens-
ing reflectance (R ;) using inversed eq. 9 [Lee
et al., 2002]. The Q factor (eq. 6) value may vary
in a wide range from 1 to 6 or even higher depend-
ing on water turbidity, sun zenith angle and view-
ing angle [Jerome, 1996; Mobley, 2002]. Based on
the shipborne measurements conducted in Lake
Michigan [EEGLE, 2003] we assume that for sun
zenith angles below 30° (typical of summer-time
illumination conditions within the Lake Michigan
latitudinal belt) the Q factor does not vary signifi-
cantly and on average is close to 4.

(10)

Inverse problem solution
The Levenberg-Marquardt algorithm

The problem of determination of the CPA con-
centration vector, C is solved using the multivari-
ate optimization approach. The spectral difference
between the measured (R _,,) and reconstructed
remote sensing reflectance (using eq. 10) (R .,;)
is calculated as:

g(C) = Rrst - RrszOT (C) (1 1 )

The absolute minimum of g is found with the
Levenberg-Marquardt finite difference algorithm
[Press et al., 1992], which assures a rapid conver-
gence of the iterative procedure. The following it-
erative expression is used to this goal:

C...= C.(F'F+ uD,)'Flg (12)

where k is the iteration step, Fis the Jacobian ma-
trix, u, is the length and direction of minimization
step, D, = diag (FF,) is the diagonal of matrix of

F7F.. The Jacobian matrix has n x m elements and
is calculated as follows:

f.,=0a(A,C,)/oC, (13)

where A, is the wavelength, at which R has been
determined (i. e., i = 1-6 in case of MODIS with
6 spectral channels in the visible region), Cj is the
CPA concentration (encompassed by the concen-
tration vector C). In our simulations j = 1-3, i. e.
only three components were considered, viz. C,,,
C., and a.,,,,. Thus, through a multivariate itera-
tive procedure testing sequentially the values of
CPA specific concentrations, the magnitude of the
concentration vector C, for which the Jacobian
matrix is the minimum, eventually defines the solu-
tion of the inverse problem.

Realization of the algorithm in the code

The algorithm is realized as a Python and C++
software package called Bio-Optical REtrieval
Algorlthm for Shallow waters [BOREALI-OSW,
https://github.com/nansencenter/boreali].  The
Python part consists of one class called Boreali and
incorporates the procedures for opening input files,
loading the values of specific absorption and back-
scattering coefficients from the text files and run-
ning the processing in several parallel threads. The
C++ part consists of a hierarchy of classes called
Hydrooptics and HydroopticsShallow and several
interface functions that communicate with Python
and CMINPACK library. The class Hydrooptics is
designed for performing all hydro-optical calcula-
tions in deep waters and has separate procedures
implementing egs. 1, 2, and 10. The class Hydroop-
ticsAlbedo inherits from HydroopticsShallow and
overrides methods implementing eqgs. 6-9. The
analytic formulas for calculating the elements of
Jacobian matrices (presented in a general form in
eq. 13) were excessively long and the discrete finite
difference derivatives are used, which require less
computations. The CMINPACK library was used for
performing the Levenberg-Marquardt optimization
procedure [More, 1984].

Numerical experiments with the forward
model and BOREALI-OSW algorithm

Sensitivity analysis of the forward model

Several numerical experiments were
conducted to test the applicability of the algorithm
to processing of data from the Laurentian Great
Lakes. In the first group of experiments, we
tested the sensitivity of the forward model to
variations in bottom depth and type as well as

CPA concentrations. The spectral values of R _ -
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were simulated for the following combinations of

parameters typical of the Laurentian Great Lakes:

1. CPA concentration combinations are listed in
Table 1;

2. Depths: 2,5, 8, 11, 20, 100 m;

3. Bottom types: sand, silt, green algae Chara sp.,
green algae Cladophora glomerata, and lime-
stone pebble.

R ..o spectra were plotted for each option
specified above to reveal the responsiveness of
R _..or values to the variability in CPA concentra-
tions and bottom depth and type. In addition, we
studied the dependence of the spectrally averaged
relative diﬁerence (DH = (RrszOT - RrstEEF’) / RrstEEP)
on the same variables. The numerical simulations
explicitly indicate (a few cases are exemplified in
Fig. 3) that the bottom optical impacton R _ .- de-
pends on a complicated interplay of all three fac-
tors: depth, bottom type and CPAs combinations.
The strongest impact is observed in clear waters
(the upper row of boxes in Fig. 3) but its intensity
decreases as the concentration of one or several
CPAs, i. e. CHL, TSM or CDOM, increases (the low-
er rows of boxes in Fig. 3).

In turbid waters, the impact is the lowest: only
at a 2 m depth we can observe D, of about 30 %
whereas at more significant depths the bottom
optical influence becomes undetectable. The

sandy bottom (having the highest albedo averaged

throughout the visible spectrum) exhibits the
highest impact on the water leaving signal (the left
column of plots in Fig. 3): D, reaches 3600 % for
a 2 m depth in clear waters. The bottom covered
with Cladophora produces a significantly lower
impact: D, =1400% (the middle column
in Fig. 3). Finally, a Chara - covered bottom
(the third column in Fig. 3) and a silted bottom
(not exemplified in Fig. 3) produce the lowest
impact: D, . = 300 %.

The bottom optical impact may result in either
a general increase in R_ - (see e. g. the case
of a sandy bottom in CHL- and TSM-dominated
waters, Fig. 3, boxes B, F, G), or ageneral decrease
of R .- (see e. g. the case of a Chara-covered
bottom in TSM-dominated waters, Fig. 3, box K), or
a decrease in the blue accompanied by an increase
in the red (see e. g. the case of a Cladophora-
covered bottom in TSM-dominated waters,
Fig. 5, boxes A, E, G) as the bottom depth declines.
If the bottom albedo is high enough, higher values of
R ..orare observed in shallow waters as opposed to
deep waters: more sun light is reflected due to both
reflectance from bottom and backscattering within
the water column. Contrarily, in shallow waters at
low values of albedo, the bottom reflects less light
than that backscattered by the water medium, and
the resultant R _ .- (see eq. 10) becomes lower as
compared to that in deep waters.
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Table 2. Depths (m) at which the reflection from the bottom significantly impacts the water leaving light signal

(D, > 10 %)
Bottom Type Clear Water CHL-Dominated TSM-Dominated Slightly Turbid Very Turbid
Sand 60 15 1 7 3
Silt 50 12 4 5 2
Limestone 50 12 4 5 2
Cladophora 35 12 4 5 2

The spectral signature of R_ . is conjointly
controlled by the spectral features of absorption
and backscattering of water per se and co-
existing CPAs as well as the spectral curvature of
bottom albedo. Thus, in the case of clear waters
and a sandy/highly reflective bottom (whose
albedo grows linearly with the wavelength,
Fig. 4) the hyperbola like spectrum of pure water
reflection enhances rapidly in the blue with
decreasing bottom depth, and at 2 m depth the
R ...or Spectrum acquires a dome-like shape
with a broad flat top stretching from 500 to 600
nm (Fig. 3, box A). Even though the sand albedo
is highest in the red (Fig. 4), the growth of R _ .
with decreasing bottom depth in this spectral
region is subdued due to strong water absorption
at wavelengths > 620 nm. For the Cladophora-
covered bottom, whose spectral albedo is dome-
like (Fig. 4), at 2 m depth a well-pronounced peak
centered at 550 nm stands out as a salient spectral
featurein R, .,,accompanied by a decrease in the
blue and red parts of the spectrum.

A comparison of R_ . in the case of CHL- and
TSM-dominated waters (Fig. 3, boxes B, C), re-
veals, firstly, that at bottom depths exceeding
2 m, it is nearly twice higher for CHL-dominated
waters. Secondly, increasing bottom depth in CHL-
dominated waters leads to a higher absorption in
the blue due to chlorophyll with a result of a sig-

30

et

25} L. sand |
T e silt_|
RS
=) :

g limestone -
3 .
©

10

~
~ 1
-

. cladophora |

0 ) . ‘ . _ chara
400 450 500 550 600 650 700
wavelength, nm

Fig. 4. Spectral values of bottom albedo used in our
study (data from [Kutser et al., 2006])

nificant reduction of R_ _—at A =400 nm (from
0.02 sr'at 2mto 0.007 sr'') at 20 m, Fig. 3, box B.

Contrarily, in TSM-dominated waters, back-
scattering is the major player, and R_ . at
400 nm remains almost intact with increas-
ing bottom depth and retains a fairly high value
(0.03 sr' Fig. 3, box C). In addition, due to back-
scattering by TSM the values of R . - are also en-
hanced in the red (ranging from 0.01 sr' at 2 m to
0.002 sr' at 5 m and deeper, Fig. 3, box C). This
is in contrast with infinitesimal values of R ... for
CHL-dominated waters when the bottom depth is
in excess of 5 m (Fig. 3, box B).

At low bottom depths, R, .- spectra in the case
of CHL-dominated waters with a sandy bottom re-
semble rather closely R _ .., spectra originating
from deep TSM-dominated waters: similar reflec-
tion enhancements at 490 and 550 nm, R _ . val-
ues ranging from 0.03 to 0.005 sr' (Fig. 3, boxes
B and C). It is the strong absorption of CHL-a and
intense scattering by TSM which permit to unmis-
takably ascribe R .. spectra to waters catego-
rized as CHL- and TSM dominated: spectra from
shallow CHL-dominated waters should have lower
values in the blue and red comparing to spectra
from deep TSM-dominated waters.

The value of D, decreases with the increase of
either bottom depth or CPA concentrations, and
this decrease depends on the bottom type. When
D, reaches some critical value, e. g. 10 %, it is an
indication that the uncertainty in measurements of
R ...or is higher than the method’s sensitivity to the
bottom optical influence. Table 2 illustrates our es-
timations of the depth, at which D, is above 10 %
under different in-water conditions, i. e. combina-
tions of CPA values and bottom types. At higher
values of bottom depths, the correction for the bot-
tom optical impact is not worth applying.

Our simulations indicate that in ideally clear wa-
ters even a Chara-covered bottom may be seen
at depths of 11 meters, while sandy bottoms are
discernible at depths of 60 meters. However, the
presence in the water column of even low amounts
of CHL or TSM reduces these depths to, respec-
tively 4 and 15 meters. In turbid waters, the depth at
which we can potentially detect the bottom optical
impact is 3—7 meters and it is only 2 m or even less
in very turbid waters.

@



— CHL, 4m — TSM, 4m CDOM, 4m — CHL, 8m — TSM, 8m -- CDOM, 8m
,////‘/ A
e e T
T T
/,// - -
,/}/:"-/- .:‘:7-:'_*:‘7; T EEE S .-
H

-
ez

error in CPA retrieval, %

error in depth, m

error in Rrsw, %

5 e 7 00 05 106 15
error in bottom type, %

Fig. 5. Relative error of CPA concentration retrievals under various in-water conditions. Results
of the numerical experiments are presented in three rows of boxes for each bottom type (sand,
Chara-covered, Cladophora-covered) and three columns of boxes for each variable (depth,

R

rswTOT’

albedo). Each box contains plots for CHL (dotted line), TSM (solid line) and a
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CDOM (

line) for two depths: 4 m (thin lines) and 8 m (thick lines). Results for a silt-covered bottom are
not illustrated as they are very similar to those pertaining to the Chara-covered bottom

Thus summing up, the performed numerical
simulations show that our model provides quite re-
alistic values of R .- and accurately accounts for
the various factors that affect its spectral shape. It
is revealed that R _ .. spectra may be similar re-
gardless of different water composition and bottom
depth conditions (e. g. CHL-dominated shallow-
waters or TSM-dominated deep waters). At the
same time it is shown that there are features that
make the reflectance spectra attributable to spe-
cific types of hydro-optical situations. Our analysis
of D, values permitted to identify conditions when

the correction for bottom influence is mandatory.

Numerical experiments with the inverse
problem solution.

Sensitivity of the retrieval algorithm to noise
in input data

Sensitivity of the BOREAL-OSW algorithm is de-
fined as a dependence of the error in retrievals of CPA
concentrations on the errors in input values of either
depth, H or reflectance, R, or bottom type albedo,
A. The sensitivity was estimated through numerical
experiments involving the following three steps: (i)

simulation of spectral R .. values using the afo-

respecified parameterizations suggested by Kirk
[1984], Bukata et al. [1995], and Albert and Gege
[2006] for K, [Pozdnyakov, Grassl, 2003], b [Buka-
taetal., 1995] and R, respectively for a given set
of CPA concentrations, water depths and bottom
types; (ii) contamination of either H, R _ ..., or A with
different levels of noise; (iii) retrieval of CPA con-
centrations and comparison with the ones used in
the first step simulations. For each experiment 1000
vectors of CPA concentrations were randomly gener-
ated within the following concentration ranges: CHL:
0-5 mg/m3, TSM: 0-2 g/m3, aCDOM: 0-0.5 m™".

The experiments were performed for three
bottom types: sandy bottom, Chara-covered bot-
tom and Cladophora-covered bottom, and for two
depths: 4 and 8 m. Alterations of H were performed
by adding a normally distributed noise with a stan-
dard deviation equal to 0, 0.5, 1, 1.5 and 2 m. Al-
terations of R .. were simulated by adding wave-
length-independent normally distributed noise with
a standard deviation equal to 0, 2, 4, 6 and 10 %.
Alterations of spectral bottom albedo, A were en-
forced through spectral mixing of the correct A val-
ues with a 15, 25, 35 and 50 % departure. To com-
pare simulated and retrieved CPA concentrations
a normalized root mean square error (E) expressed
in percent was employed:
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where CS is the simulated concentration of the i-th
CPA in thej -th concentration vector, C” is the re-
constructed CPA concentration, n is the number
of vectors.

The results of our numerical experiments reveal
(Fig. 5) that although the accuracy of CPA concen-
tration retrieval exhibits a strong dependence on
noise in input data, the algorithm remains reason-
ably robust.

Unlike deep waters, in shallow waters, the BO-
REALI-OSW algorithm is very sensitive to errors in
the bottom depth, H (Fig. 5, boxes A, B, C). If the
bottom has a high value of albedo (e. g. covered by
sand), underestimation of depth even by 0.5 m re-
sults in misinterpretation of high spectral values of
R ...or Which are attributed to high values of TSM,
thus increasing ETSM to 30 %. In the case of a darker
bottom (e. g. Chara-covered), errors in TSM re-
trievals do not exceed 15 % even in shallow waters
and the data on depth noised up to 2 m (Fig. 5, box-
es B, C). The results of retrieval of CHL and a.,,,
are more sensitive to noise in depth and E may ex-
ceed 20 % if the noise in depthis as low as 0.5 m.

The BOREALI-OSW algorithm proves to be
very sensitive to errors in R, with the worst
results obtained for CHL (E,, exceed 20 % if only
a2 % noise is added to R ). However, it performs
with this noise much better for TSM (E,,, does
not exceed 20 % even if noise in R reaches 8 %
at any depth or for any bottom type) (Fig. 5, boxes
D, E, F). The algorithm is especially sensitive
to noise in R_ for the Chara-covered bottom
(Fig. 5, box F), i. e. when the bottom albedo is low.

In shallow waters, the error in bottom type
mainly affects the accuracy of CHL retrieval: ECHL
rises above 20 % already at a 15 % error in bottom
type (Fig. 5, boxes H, I, J). In deep waters the value
of E for TSM and CDOM does not exceed 20 %
even if the error in bottom type is as high as 50 %.

Table 3 summarizes the results of the
BOREALI-OSW algorithm sensitivity experiments
and specifies the conditions when the algorithm
can be applied with acceptable accuracy (i. e.,
the average E for all three CPAs is below 30 %).
The conditions listed in Table 3 are quite realistic
Table 3. Maximum levels of noise in H, R .., and
A resulting in averaged values of £ < 30 %. The first
and second numbers stand for a 4 m and 8 m depth,
respectively

Altered Variable Sand Cladophora Chara
H 0.5m,Tm | 0.5m,1.5m [0.5m,3m
R .or 3%,6 % 6 %, 10 % 2%,3%
A 50%,80% | 50%,90% |35%,95%

and can be encountered in a variety of natural
water bodies. This fully justifies the application of
BOREALI-OSW in the Laurentian Great Lakes.

Discussion

In the following discussion we are focusing on
two key aspects of the results intended to meet the
original objectives set up in the present study: deve-
lopment of a bio-optical retrieval algorithm for very
clear / optically shallow waters, and assessment of
its potentials as an operative tool for satellite-based
monitoring of the coastal zone of Lake Michigan.

Correspondingly, such an algorithm, named
BOREALI-OSW, and the respective code were elab-
orated. The BOREALI-OSW algorithm is based on
the Levenberg-Marquardt multivariate optimization
technique, a hydro-optical model established spe-
cifically for Lake Michigan, and a few parameteriza-
tions relating (i) the bulk water column inherent op-
tical properties (absorption and scattering) to the
CPA concentration vector, C and (ii) the subsurface
remote sensing reflectance to C, bottom type and
depth as well as the sun illumination conditions.

Quite expectedly, the simulations revealed
that the optical influence of the bottom reflec-
tion becomes progressively less pronounced with
increasing C and absorption capacity of the sub-
strate. However, possibly due to the CPA properties
inherent in Lake Michigan, this dependency proves
to be very steep: even in relatively clear water con-
ditions (often found in many lacustrine aquatic
environments: CCHL =1 mg/mé, C,, =0.2 g/md,

a.po, = 0.05 m), the most refiective (sandy) bot-
tom does not impact appreciably the upwelling
signal starting with H = 7 m, and it is optically in-
consequential at H = 3-5 m, if the substrate is ei-
ther Cladophora or Chara. In waters labeled by us
as very turbid (C,, =5 mg/m?, C = 1.0 g/mé,

a.po, = 0.5 M) (in reality, it is a rather conditional
ascription because in many inland and shelf sea
waters within the temporal latitudinal zone such
waters should rather be subsumed under the cate-
gory of relatively clear waters [Pozdnyakov, Grassl,
2003]), the water leaving signal is already immune
to the optical impact of bottom, whose depth is
about 2 m.

Our numerical simulations have shown that for
the water type gradation adopted, TSM-dominated
waters unlike CHL-dominated waters obscure the
bottom far more radically: with the exception of
a sandy bottom case, a bottom depth of 4 m is al-
ready a limit for affecting the CPA retrieval results.

It is worth mentioning that depending on the
bottom depth and substrate type as well as the
water composition, the spectra of total subsurface

remote sensing reflectance, R, .., might resemble
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each other, e. g. in the case of CHL-dominated
waters with a sandy bottom they resemble rather
closely R .., spectra originating from deep TSM-
dominated waters. Our simulations are explicitly
indicative that this resemblance is entirely due to
the specific features of CHL and TSM inherent opti-
cal properties.

Interestingly, irrespective of the spectral sig-
nature of the bottom substrate considered in our
study, the spectral distribution in R_ .. exhibits
invariably a prevalent bell-like maximum (at about
550 nm). This maximum decreases with water tur-
bidity and bottom reflectivity. It is also noteworthy
that the maximum is centered spectrally differently,
but this difference is rather slight for all water com-
position options and bottom types. However, for
low reflective/vegetated bottoms the water column
becomes more reflective at shorter wavelength,
especially in the TSM-dominated as opposed to
CHL-dominated cases.

Based on numerical simulations, the developed
coded model has been further submitted to a thor-
ough analysis to reveal its sensitivity to the accu-
racy of such input parameters as bottom depth,
H and bottom albedo/bottom type.

The retrievals of TSM with the BOREALI-OSW
algorithm are vulnerable to errors in the bottom
depth, H provided the substrate albedo is high.
Contrarily, the retrievals of CHL and aCDOM suffer
from errors in H estimations in the case of vegetat-
ed substrates: NRSMSE may exceed 20 % if the
noise in depth is even below 0.5 m. Understand-
ably, these effects arise completely from the spec-
tral features of absorption and backscattering of
respective CPAs: it is suffice to remind that CHL and
CDOM are optically most active in the blue whereas
TSM transforms the upwelling light predominantly
at the wavelengths in excess of 550 nm.

The BOREALI-OSW performance efficiency is
also susceptible to errors in R ... This is partic-
ularly so for the retrievals of CHL and significantly
less for restoring TSM. The former is accentuated
in the case of vegetated substrates, and low bot-
tom depths. As Table Sillustrates, depending onthe
bottom type, the permissible errors in R _ . (E <
30 %) must be within very narrow limits (2-6 %)
at H =4 m, which is a serious challenge given the
typical inaccuracies in atmospheric correction in-
herent in level 2 data of MODIS [IOCCG, 2010]. The
requirements to the accuracies in A, and, to certain
degree, in H are less stringent and believed to be
realistically attainable.

Assessing in general the performance of the de-
veloped code it can be defended that at least for
bottom depths under ca 10 m the application of
the BOREALI-OSW algorithm accounting for bot-
tom optical influence yields CHL values apprecia-

bly closer to those determined in the laboratory as
compared to CHL retrievals performed with the al-
gorithms neglecting the bottom effect. At sites with
a deeper bottom depth, the difference between
the retrievals taking into account and neglecting
the bottom optical impact progressively decreas-
es, however it persists thus giving additional evi-
dence in favor of the application of the BOREALI-
OSW algorithm.

Conclusions

In attacking the problem of remote sensing of
optically shallow waters with the purpose of retriev-
ing concentrations of CPAs against the background
of the light signal originating from bottom reflec-
tions, we pursued two avenues. Firstly, by means
of forward simulations we analyzed through the
spectral signature variations of subsurface remote
sensing reflectance, R, the modifications of the
upwelling signal (controlled by the bottom type and
depth). Then we passed to inverse problem simula-
tions in order to test the sensitivity of our calcula-
tions of CPA concentrations to possible excursions
of the input parameters such as bottom depth, bot-
tom type, and measured spectral values of sub-
surface remote sensing reflectance, R . To do
that, we developed a retrieval algorithm (BOREALI-
OSW) dedicated specifically to cope with optically
shallow waters.

To achieve the forward problem solution, we
employed the hydro-optical model inherent in Lake
Michigan water, and considered the bottom types
encountered in this water body, viz. silicon sand,
Cladophora/Chara, limestone rocks, and silt.

Our simulations have shown that even atvery low
CPA concentrations (less than 0.01 in respective
units) the optical influence of the bottom becomes
indiscernible, if the bottom depth, H approaches
20 m. In waters containing the total suspended
matter (TSM) in quantities of about 0.5 g/m? (while
CHL and colored dissolved organic matter, CDOM
remain infinitesimal) the bottom optical influence
ceases at H slightly above 10 m. An analogous criti-
cal value of H was found if a_,,, is 0.5 m™, while
CHL and TSM are infinitesimal.

The noise sensitivity analysis has shown that
the shallower the water column and higher bottom
albedo the more significant is the ensuing error in
CPA retrievals. However, even in the case of a san-
dy bottom and a water column of 5 m, a 10 % error
in determining its albedo leads to a 18 %, 28 % and
10 % error in retrieving, respectively, CHL, TSM and
CDOM. In the case of deeper waters (H = 10 m)
the noise in all considered CPA retrievals becomes
lower than 4 %, 10 % and 4 % for CHL, TSM and

CDOM, respectively.
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Our analysis of the dependence of normalized
root mean square error, £ in CPA concentration
determinations on the noise level in input values of
bottom depth, H and bottom albedo, A has shown
that £ values can reach 18 %, ~30 % and 10 % for
CHL, TSM and CDOM, respectively, if the noise in
H is 10 %, but they become much higher (55 %,
55 % and 17 % for CHL, TSM and CDOM, respec-
tively) if the noise in A is 10 %.

Our numerical assessment of the BOREALI-
OSW algorithm performance in real conditions of
Lake Michigan convincingly shows that at least for
bottom depths less than 10 m its application to in
situ radiometric data yields CHL values apprecia-
bly closer to those determined in the laboratory as
compared to CHL retrievals performed with the al-
gorithms neglecting the bottom effect. At sites with
the deeper bottom depths, the difference between
the retrievals taking into account and neglecting
the bottom optical impact progressively decreas-
es, however, remains appreciable thus giving ad-
ditional evidence in favor of the application of the
BOREALI-OSW algorithm.

Thisinvestigation was supported by NASA Roses
Grant#NNX09AU88G and Michigan Tech Research
Institute Internal Research and Development.
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