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ЛЕСАХ КАРЕЛИИ
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Прогнозируемое усиление гидрометеорологического стресса в бореальных эко-

системах требует оценки показателей водообмена растений в широком диапазоне 

условий внешней среды для выявления адаптационного потенциала наземных эко-

систем к возможным сценариям изменения климата. Целью исследования было оце-

нить влияние абиотических факторов на параметры водообмена сосны обыкновен-

ной (Pinus sylvestris L.) в старовозрастных лесах среднетаежной подзоны Карелии в 

течение двух контрастных по гидротермическим условиям вегетационных периодов 

2023 и 2024 гг. Для этого проведен анализ изменчивости величин предрассветных 

и полуденных водных потенциалов охвоенных побегов у 170-летних деревьев сосны 

на 14 постоянных пробных площадях, заложенных в 5 группах сосняков черничных и 

брусничных, сформированных в разных почвенно-гидрологических условиях. Пока-

зано влияние дефицита и избытка атмосферных осадков на водообмен сосны в гра-

диенте гидротермических условий почвы. При дефиците атмосферных осадков наи-

более низкие значения водного потенциала в предрассветные (–1,06…–1,22 МПа) 

и полуденные (–1,46…–1,54 МПа) часы отмечены в группах сосняков на подзолах. 

Вместе с тем установлено сходство дневного градиента водного потенциала (0,35–

0,44 МПа) в группах сосняков на подзолах и торфяных почвах. В условиях обильных 

осадков наиболее высокий полуденный водный дефицит (–1,21…–1,38 МПа) отме-

чен в группе сосняков, сформированных в контрастных условиях подзола песчаного 

и торфяных почв. В сезонной динамике (май–июль) установлено нарастание водно-

го дефицита у сосны всех групп биогеоценозов на фоне роста дневного градиента 

водного потенциала в мае (0,41–0,64 МПа), июне (0,64–0,79 МПа) и июле (0,75–1,07 

МПа). Увеличение последнего в большей степени обусловлено температурой почвы 

(R2 = 0,59, p < 0,001) относительно ее влагообеспеченности (R2 = 0,12, p < 0,001). 

Обсуждаются механизмы адаптации, направленные на гомеостатирование водного 

статуса древесных растений.

К л ю ч е в ы е  с л о в а: Pinus sylvestris; предрассветный и полуденный водный 

потенциал; биогеоценозы; факторы среды; бореальные леса
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The predicted increase in hydrometeorological stress in many of the world’s ecosystems 

necessitates the assessment of plant water exchange indicators in a wide environmen-

tal range to reveal the adaptation potential of terrestrial ecosystems under possible cli-

mate change scenarios. The aim of this study was to assess the effect of abiotic factors 

on the water exchange parameters of Scots pine trees (Pinus sylvestris L.) in mid-boreal 

old-growth forests of Karelia during two growing seasons with contrasting hydrothermal 

conditions (2023–2024). For this purpose, we analyzed the variability of predawn and 

midday water potentials of foliated shoots of 170-year-old pine trees in 14 permanent 

sample plots established in 5 groups of bilberry- and lingonberry-type pine forests formed 

in different edaphic and hydrological conditions. The effects of deficient and excessive 

precipitation on water exchange in pine were shown for a gradient of soil hydrothermal 

conditions. Where precipitation was in deficit, the lowest values of the water potential in 

predawn (–1.06...–1.22 MPa) and midday hours (–1.46...–1.54 MPa) were observed in 

groups of pine forests on podzols. At the same time, the daily gradient of the water po-

tential (0.35–0.44 MPa) was found to be similar in the groups of pine forests on podzols 

and on peat soils. Under abundant precipitation, midday water deficit (–1.21...–1.38 MPa) 

was the highest in the group of pine forests formed in contrasting environments of a sandy 

podzol and on peat soils. The seasonal dynamics (May–July) exhibited an increase in wa-

ter deficit in pine trees of all groups of biogeocenoses with a simultaneous increase in the 

daily water potential gradient in May (0.41–0.64 MPa), June (0.64–0.79 MPa) and July 

(0.75–1.07 MPa). The increase in the latter was mostly associated with soil temperature 

(R2 = 0.59, p < 0.001) relative to soil water availability (R2 = 0.12, p < 0.001). The article dis-

cusses the adaptation mechanisms for maintaining hydraulic homeostasis in woody plant.

K e y w o rd s: Pinus sylvestris; predawn and midday water potentials; biogeocenoses; en-

vironmental factors; boreal forests
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Введение

В настоящее время проблема изучения вод-

ного режима растений в условиях меняющего-

ся климата, характеризующегося ростом тем-

пературы, изменением режима осадков и уве-

личением повторяемости аномальных явлений 

погоды [IPCC…, 2023], получила особую акту-

альность. Недостаток или избыток воды в поч-

ве является одним из ведущих лимитирующих 

факторов продуктивности наземных экосистем 

[Kramer, Boyer, 1995; Lambers, Oliveira, 2019]. В 

последние десятилетия массовая гибель дере-

вьев и лесов, вызванная засухой и жарой, стала 

глобальной проблемой [Allen et al., 2010; Senf 

et al., 2020]. В связи с прогнозируемым увели-

чением гидрометеорологического стресса во 

многих экосистемах мира [Kangur et al., 2017; 

Choat et al., 2018; IPCC…, 2023] необходимо 

исследование реакций показателей водооб-

мена растений в широком диапазоне условий 

внешней среды для выявления адаптационного 

потенциала наземных экосистем к возможным 

сценариям изменения климата.

Водный дефицит или, напротив, обеспечен-

ность растений влагой оказывают непосред-

ственное влияние на их рост и продуктивность 

в целом [Кайбияйнен, 2003; Breda et al., 2006; 

Eckes-Shephard et al., 2020], регулируя по-

средством тургора камбиальную активность 

и рост клеток растяжением [Hölttä et al., 2010; 

Cabon et al., 2020; Peters et al., 2021], а также 

интенсивность фотосинтеза и дыхания [Корен-

ные…, 2006; Суворова, 2009; Muller et al., 2011; 
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Судачкова и др., 2012; Сазонова и др., 2017; 

Bucci et al., 2019; Antonova et al., 2023; Мол-

чанов, Беляева, 2024], поглощение и транспорт 

веществ [Lambers, Oliveira, 2019]. Наиболее 

универсальным показателем обеспеченности 

растения водой является водный потенциал 

(Ψ), величина которого отражает состояние 

баланса между поступлением влаги из почвы 

и потерями влаги в процессе транспирации 

и зависит от запасов воды в самом растении 

[Hinckley et al., 1978; Turner, 1981]. Временна́я 

изменчивость величины Ψ реализуется в виде 

устойчивых суточных ритмов, когда в предрас-

светное и дневное послеполуденное время 

показатель достигает наибольших (Ψ
max

) и наи-

меньших (Ψ
min

) значений соответственно. Вы-

сокие значения Ψ
max

 для древесных растений 

связывают в основном с влажностью почвы и 

запасами воды в заболони дерева [Hinckley et 

al., 1978; Kramer, Boyer, 1995]. Вместе с тем в 

условиях Европейского Севера при достаточ-

ном почвенном увлажнении в период вегетации 

отмечают несоответствие между влагообес-

печенностью почвы и величиной Ψ
max

 [Richter, 

1997; Sellin, 1999; Сазонова и др., 2017], что 

может быть обусловлено недостаточно про-

должительным темновым периодом северного 

лета для восстановления водного потенциала 

растений и установления равновесия показате-

ля в системе «почва – растение». Предрассвет-

ное неравновесие между Ψ
max

 у древесных ра-

стений и увлажнением почвы в теплый период 

года связывают также с ночной транспирацией 

[Donovan et al., 2001; Dawson et al., 2007; Kangur 

et al., 2017]. Величина полуденного Ψ
min

 при 

достаточной влагообеспеченности растений 

коррелирует с основными факторами среды, 

в частности с освещенностью, температурой 

и дефицитом влажности воздуха, и зависит от 

транспирационных расходов влаги [Hartzell et 

al., 2017; Bucci et al., 2019; Knipfer et al., 2020]. 

Кроме абиотических факторов на показа-

тели водообмена могут влиять возраст и раз-

меры дерева [Domec et al., 2008; Grote et al., 

2016; Fernández-de-Uña et al., 2023]. Отмеча-

ют, что увеличение высоты дерева с возрастом 

под воздействием силы тяжести сопровожда-

ется ростом гидростатического градиента 

(–0,01 МПа м –1) и гидравлического сопротив-

ления вследствие более длинного пути кси-

лемы и большего числа междоузлий, которые 

должна пересечь вода [Turner, 1981; Richter, 

1997]. Это может привести к нарастанию вод-

ного стресса и последующему закрытию устьиц 

у старых высоких деревьев относительно бо-

лее молодых низкорослых, что в свою очередь 

может уменьшить интенсивность фотосинтеза 

[Niinemets, 2002; Ryan et al., 2006] и, как след-

ствие, снизить доступность ассимилятов для 

поддержания метаболической и гидравличе-

ской функции, в частности, посредством осмо-

регуляции [McDowell, 2011].

Леса России составляют более половины 

бореальных лесов планеты [FAO…, 2020]. По 

возрастной структуре около половины пло-

щади лесов Российской Федерации, занятой 

хвойными породами, представлено спелыми 

и перестойными насаждениями [Филипчук и 

др., 2022]. В Республике Карелия насаждения 

с преобладанием хвойных пород составляют 

87,5 % от лесопокрытых площадей [Государст-

венный…, 2023], из них треть общей площади 

занимают молодняки (30,3 %), остальную пло-

щадь – средневозрастные (21,6 %), приспева-

ющие (6,3 %), спелые и перестойные (29,3 %) 

леса. В связи с наиболее выраженным в вы-

соких широтах увеличением частоты и интен-

сивности экстремальных погодных явлений 

[IPCC…, 2023], включая волны жары, засухи и 

ливни, анализ составляющих водного балан-

са спелых и перестойных хвойных насаждений 

представляет особую актуальность вследст-

вие их большей уязвимости к гидравлическому 

стрессу и высокой представленности в регионе 

и стране в целом. Целью работы была оценка 

влияния абиотических факторов на параме-

тры водообмена сосны обыкновенной (Pinus 

sylvestris L.) в старовозрастных лесах среднета-

ежной подзоны Карелии.

Материалы и методы

Работа выполнена на тестовом полигоне 

интенсивного уровня [Мошников и др., 2024] 

в среднетаежной подзоне на территории за-

поведника «Кивач» (Республика Карелия) в 

последнюю декаду мая – июле 2023 и 2024 гг. 

(рис. 1). Климат района исследования пере-

ходный от континентального к субарктическому 

типу [Peel et al., 2007], среднегодовая темпера-

тура воздуха за 30-летний период (1991–2020 гг.) 

составляет +3,6 °С [Назарова, 2021], с ми-

нимальными значениями в январе (–8,4 °С) 

и максимальными в июле (+17,1 °С). Коли-

чество осадков в течение года значитель-

ное – 550–750 мм, из них с мая по октябрь – 

350–400 мм [Назарова, 2021]. Суммарный ра-

диационный баланс за вегетационный период 

составляет 1130 МДж/м2. Вегетационный пери-

од (май–сентябрь) 2023 г. в районе исследова-

ния, согласно данным метеостанции Кондопога 

(https://rp5.ru), характеризовался в мае, июне 

и августе теплыми засушливыми условиями 

(ΔТ
мес

 ⩽ 1,7 °С и 43, 63 и 88 % нормы осадков 
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соответственно) относительно холодного дожд-

ливого июля (ΔТ
мес

 ⩽ –1,5 °С и 189 % нормы 

осадков) (рис. 2). Аналогичный период 2024 г. 

был теплым (0,7 °С < ΔТ
сез. 

< 2,3 °С) и отличался 

дефицитом осадков (59 % нормы) относитель-

но предыдущего года (108 % нормы). 

Наблюдения проводили на постоянных проб-

ных площадях (ПП) размером 50 × 50 м (0,25 га), 

заложенных в сосняках черничных (ПП 8, 33, 38, 

44, 219, 64, 75, 113, 115, 190, 198, 204) и брус-

ничных (ПП 260, 282), относящихся преимуще-

ственно к II–III классу бонитета [Мошников и 

др., 2024; Пеккоев и др., 2024]. Относительная 

полнота насаждений варьирует в пределах 0,7–

1,0. Почвы разных ПП представлены подзолом 

песчаным (ПП 38, 44, 219, 113, 115, 260, 282), 

подзолом супесчаным (ПП 190, 198, 204), су-

глинистыми (ПП 8, 33) и торфяными (ПП 64, 75) 

почвами [Akhmetova et al., 2024]. Глубина за-

легания подземных вод на территории полиго-

на составляет 3–6 м [Лукина и др., 2024]. Раз-

ные ПП тестового полигона были объединены 

в группы биогеоценозов (БГЦ) в соответствии с 

типом леса, возрастом древостоя, напочвенным 

покровом и типом почвы [Пеккоев и др., 2024; 

Akhmetova et al., 2024]. В настоящей работе об-

суждаются данные, полученные в 1-й (ПП 38, 

44, 219 и 113, 115), 2-й (ПП 190, 198, 204), 4-й 

(ПП 260, 282), 6-й (ПП 8, 33) и 7-й (ПП 64, 75) 

группах БГЦ (далее – БГЦ 1, 2, 4, 6 и 7). 

Рис. 2. Изменчивость температуры воздуха (Т) и количества атмосфер-

ных осадков (Р) в период с мая (V) по сентябрь (IX) 2023 и 2024 гг. по фак-

тическим среднемесячным (1) и среднемноголетним среднемесячным 

данным за период 1991–2020 гг. для Карелии (2)

Fig. 2. Variability of air temperature (T) and precipitation (P) during the period 

from May (V) to September (IX) 2023 and 2024 based on actual monthly aver-

ages (1) and annual mean monthly data for the period 1991–2020 for Karelia (2)

Рис. 1. Расположение тестового полигона в районе 

исследования

Fig. 1. Location of the test polygon in the study area
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Объектом исследования послужили модель-

ные деревья сосны обыкновенной (Pinus syl-

vestris L.), средний возраст которых для всех 

групп БГЦ составил 170 лет, высота – 23,5–30,9 м, 

диаметр – 27,3–47,6 см [Мошников и др., 2024; 

Пеккоев и др., 2024]. В качестве показателей 

влагообеспеченности растений использовали 

величины предрассветных (Ψ
max

, МПа) и полу-

денных (Ψ
min

, МПа) водных потенциалов охво-

енных побегов. Величину дневного градиента 

водного потенциала (ΔΨ, МПа) находили по раз-

ности величин (Ψ
min

–Ψ
max

). Отбор побегов прово-

дили в предрассветные (03.00–05.00) и полуден-

ные (13.00–15.00) часы в средней части кроны 

модельных деревьев сосны на высоте 18–24 м с 

помощью секатора. С каждого дерева отбирали 

по три-четыре охвоенных побега. Объем выбор-

ки за весь период наблюдений в 2023 и 2024 гг. 

для каждой группы БГЦ составил по 64 измере-

ния величин Ψ
max

 и Ψ
min

 и в целом для тестового 

полигона – 640 наблюдений. Измерения Ψ охво-

енных побегов сосны проводили сразу же после 

срезания их с дерева. Для определения величин Ψ
max

 и Ψ
min

 охвоенных побегов сосны использова-

ли камеру давления Plant Moisture Vessel SKPM 

1400 (Skye Instruments Ltd., Великобритания). 

Температуру почвы в корнеобитаемом слое 

(0–20 см) и объемную влажность почвы (в слое 

0–5 см) регистрировали в первую и последнюю 

декаду месяца в период с мая по июль 2024 г. с 

помощью датчиков температуры почвы (Omega, 

США) и объемной влажности почвы ЕСН
2
О ЕС-5 

(Decagon Devices, Inc., США) в 8-кратной по-

вторности в каждую дату наблюдений на экспе-

риментальных участках 1, 2, 6 и 7-й групп БГЦ. 

Исследования выполнены на научном оборудо-

вании Центра коллективного пользования Феде-

рального исследовательского центра «Карель-

ский научный центр Российской академии наук».

Статистическую обработку данных проводи-

ли с использованием программы Statistica 10 

(StatSoft Inc., США). Статистически значимыми 

считали различия при р < 0,05. Для оценки су-

щественных различий между средними вели-

чинами использовали критерий Тьюки. Оцен-

ку влияния контрастных условий разных групп 

биогеоценозов тестового полигона и месяца 

исследований на показатели водного обмена 

сосны проводили с помощью двухфакторного 

дисперсионного анализа. На диаграммах при-

ведены средние арифметические значения и их 

стандартные ошибки. 

Результаты и обсуждение

Анализ мезоклиматических условий района ис-

следования за двухлетний период наблюдений 

(рис. 2) показал, что величина гидротермиче-

ского коэффициента увлажнения территории 

(ГТК), который характеризует засуху по соотно-

шению тепла и влаги, за период вегетации в це-

лом (май–сентябрь) и летний период в частно-

сти (июнь–август) для 2023 года находилась в 

диапазоне, характерном для таежной зоны (1,8 

и 1,6 соответственно). Значения ГТК для анало-

гичных периодов 2024 г. указывают на засушли-

вые условия и составили 0,9 (май–сентябрь) и 

0,8 (июнь–август). Вместе с тем предшествую-

щий холодный период с января по апрель 2023 

года, напротив, отличался дефицитом атмо-

сферных осадков (90 % нормы) относительно 

2024 года (185 % нормы), что, очевидно, также 

сказалось на влагообеспеченности почв и ра-

стений всех групп БГЦ в период вегетации.

Сопоставление данных по влагообеспе-

ченности растений показало, что в 2023 г. зна-

чения Ψ
max

 побегов сосны в сосняках чернич-

ных, сформированных на автоморфных почвах 

(БГЦ 1 и 2), в большинстве случаев были ниже 

–1 МПа (–1,06…–1,22 МПа) в июне относи-

тельно июльских значений (рис. 3). Этот факт 

хорошо согласуется с дефицитом атмосфер-

ных осадков в мае–июне (рис. 2) и предшест-

вующем холодном периоде года, и вследст-

вие этого – невысокой влагообеспеченностью 

почвы, и свидетельствует о высокой дегидра-

тации ксилемы у деревьев в сосняках на под-

золах песчаных (БГЦ 1) и супесчаных (БГЦ 2). 

Ранее в условиях среднетаежного сосняка ли-

шайникового у молодых 30-летних деревьев 

сосны разного жизненного состояния на фоне 

атмосферной и почвенной засухи в период ве-

гетации отмечен широкий диапазон величин Ψ
max

 –0,55…–1,6 МПа [Сазонова, Придача, 

2015]. О формировании высокого водного де-

фицита растений говорят и низкие значения Ψ
min

 (–1,46…–1,54 МПа) в июне на всех экспе-

риментальных участках БГЦ 1 и 2. Это можно 

объяснить тем, что в теплых засушливых усло-

виях при невысокой влагообеспеченности ав-

томорфных почв поступление воды в корни из 

почвы не успевает восполнять расход воды на 

транспирацию, интенсивность которой воз-

растает в дневное послеполуденное время 

[Hartzell et al., 2017; Knipfer et al., 2020]. Исклю-

чение составил сосняк черничный на торфяных 

почвах (7 группа БГЦ), где значения как Ψ
max

 

(–0,55 МПа), так и Ψ
min

 (–0,90 МПа) у сосны в 

июне находились в диапазоне нормально-

го водного дефицита, который не оказывает 

угнетающего влияния на интенсивность фо-

тосинтеза [Сазонова и др., 2011, 2017], что, 

очевидно, обусловлено достаточным увлажне-

нием торфяных почв относительно подзолов 
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вследствие их разной влагоемкости [Еруков, 

Власкова, 1986] и разной глубины залегания 

грунтовых вод [Лукина и др., 2024]. Вместе с 

тем значения дневного градиента водного по-

тенциала (ΔΨ) во всех группах были достаточно 

близки (р > 0,05) и составили для 1, 2 и 7-й групп 

БГЦ 0,44, 0,43 и 0,35 МПа соответственно.

Сравнительный анализ данных, полученных 

в период с 21 по 25 июля 2023 г. после интен-

сивных осадков, составивших 147 % месяч-

ной нормы, выявил наибольшие значения Ψ
max

 

(–0,35…–0,49 МПа) у побегов сосны в сосняках 

черничных, сформированных на подзоле су-

песчаном (БГЦ 2), суглинистых (БГЦ 6) и тор-

фяных (БГЦ 7) почвах, относительно сосняков 

на более легких подзолах песчаных (рис. 3), где 

значения Ψ
max

 у побегов сосны были меньше и 

составили –0,58 (БГЦ 4) и –0,63 МПа (БГЦ 1). 

При этом наиболее низкие значения Ψ
max

 в ряду 

экспериментальных участков БГЦ 1 отмечены 

на ПП 44 (–0,86 МПа), что свидетельствует о вы-

соком водном дефиците растений относитель-

но других участков и очевидно связано с не-

высокой доступностью почвенной влаги. Этот 

факт можно объяснить особенностями гидро-

логического режима почв данной ПП, в частно-

сти, наиболее низким уровнем залегания грун-

товых вод (6 м) среди всех экспериментальных 

участков [Лукина и др., 2024]. Вместе с тем ве-

личины Ψ
min

 в БГЦ 1 и 7 были в 1,2 раза более 

низкими (–1,21…–1,38 МПа) относительно сос-

няков 2, 4 и 6-й групп БГЦ (–1,06…–1,12 МПа). 

Такое однонаправленное снижение величины Ψ
min

 в группе сосняков, сформированных в кон-

трастных условиях на подзоле песчаном и тор-

фяных почвах, обусловлено неблагоприятным 

Рис. 3. Значения предрассветных (Ψ
max

) и полуденных (Ψ
min

) водных потенциалов 

охвоенных побегов Pinus sylvestris в сосняках тестового полигона, сформирован-

ных на подзолах песчаных (БГЦ 1 и 4), подзолах супесчаных (БГЦ 2), суглинистых 

(БГЦ 6) и торфяных (БГЦ 7) почвах в июне–июле 2023 г. Здесь и на рис. 4: данные 

приведены с учетом вклада гравитационного градиента (–0,01 МПа м –1); различ-

ные строчные буквы (a, b, с) указывают на значимые различия средних (р < 0,05)

Fig. 3. Predawn (Ψ
max

) and midday (Ψ
min

) water potentials of foliated shoots of Pinus syl-

vestris in pine forests of the test polygon formed on sandy podzols (БГЦ 1 and 4), sandy 

loam podzols (БГЦ 2), loams (БГЦ 6), and peat (БГЦ 7) soils in June–July 2023. Here 

and in Fig. 4: the data are given taking into account the contribution of gravitational gra-

dient (–0.01 MPa m –1); different lowercase letters (a, b, c) indicate significant differen-

ces of the mean values (p < 0.05)
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влиянием на водообмен растений как дефи-

цита, так и избытка почвенной влаги [Kramer, 

Boyer, 1995; Lambers, Oliveira, 2019]. Последнее 

можно было визуально наблюдать в виде вре-

менного переувлажнения и подтопления почв 

экспериментальных участков БГЦ 7 вследствие 

подъема уровня грунтовых вод после интен-

сивных дождей в июле 2023 г. Нарушение аэра-

ции торфяной почвы, затопленной водой, оче-

видно, привело к снижению интенсивности по-

глощения воды корнями деревьев сосны БГЦ 7 

относительно их транспирационных расходов 

влаги, что отразилось на величине Ψ
min

.

Снижение скорости ксилемного потока у 

сосны обыкновенной отмечают при падении 

влажности в поверхностном слое почвы ниже 

10–15 об. % [Irvine et al., 1998]. Исследуемые 

группы сосняков в мае–июле 2024 г. образовали 

следующий ряд по убыванию величины объем-

ной влажности почвы (об. %): БГЦ 6 и 7 (28–38) 

> БГЦ 2 (15–27) > БГЦ 1 (8–16). Минимальный 

уровень увлажнения почвы в слое 0–5 см для 

1-й группы БГЦ относительно других экспери-

ментальных участков полигона, очевидно, мо-

жет сказаться на интенсивности водообмена 

деревьев сосны. При этом наиболее высокая 

изменчивость влажности почвы за исследуе-

мый период отмечена для БГЦ 1 и 2 (1,8–2 раза) 

и наименьшая – для БГЦ 6 и 7 (1,3 раза), что 

обусловлено разной влагоемкостью почв раз-

личного гранулометрического состава [Еруков, 

Власкова, 1986]. Отмеченные межбиогеоце-

нотические различия увлажнения почв в 2024 г. 

сказались на водном статусе растений (рис. 4). 

Рис. 4. Значения предрассветных (Ψ
max

) и полуденных (Ψ
min

) водных 

потенциалов охвоенных побегов Pinus sylvestris в сосняках тесто-

вого полигона, сформированных на подзолах песчаных (БГЦ 1 и 4), 

подзолах супесчаных (БГЦ 2), суглинистых (БГЦ 6) и торфяных 

(БГЦ 7) почвах в мае–июле 2024 г. 

Fig. 4. Predawn (Ψ
max

) and midday (Ψ
min

) water potentials of foliated 

shoots of Pinus sylvestris in pine forests of the test polygon formed 

on sandy podzols (БГЦ 1 and 4), sandy loam podzols (БГЦ 2), loams 

(БГЦ 6), and peat (БГЦ 7) soils in May–July 2024
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В предрассветные часы наиболее отрица-

тельные величины Ψ
max

 отмечены в 1-й (июнь) и 

4-й (май, июль) группах БГЦ (–0,44 и –0,54 МПа 

соответственно), сформированных на песча-

ных почвах, относительно 2, 6 и 7-й групп БГЦ 

на супесчаных, суглинистых и торфяных поч-

вах. Схожая закономерность уже была отме-

чена нами в июле 2023 г. для тех же групп сос-

няков. В целом величины Ψ
max

 у сосны разных 

групп БГЦ за весь период наблюдений в 2024 г. 

варьировали в диапазоне –0,23…–0,54 МПа, 

изменчивость между крайними значениями 

составила 1,5–1,9 раза. Полученные в период 

наблюдений значения Ψ
min

 свидетельствуют о 

нарастании водного дефицита охвоенных по-

бегов сосны вследствие увеличения интенсив-

ности ФАР, температуры и дефицита водяного 

пара в воздухе в полуденные часы относитель-

но таковых перед восходом солнца, что хорошо 

согласуется с известными эксперименталь-

ными данными [Hartzell et al., 2017; Придача и 

др., 2018; Bucci et al., 2019; Knipfer et al., 2020]. 

При этом наименее отрицательные значения Ψ
min

 отмечены в БГЦ 6 и 7 (–0,78…–1,14 МПа) 

относительно остальных групп сосняков 

(–1,01…–1,37 МПа). Исключение составляет 

величина Ψ
min

 в июле в БГЦ 4 (–0,74 МПа), полу-

ченная после непродолжительного дождя. 

Установленное в сезонной динамике нара-

стание водного дефицита в хвое сосны всех 

групп БГЦ проявилось в смещении диапазона 

величин Ψ
min

 в область более низких значений: 

от –0,78…–1,08 МПа (май) и –0,98…–1,24 МПа 

(июнь) до –1,09…–1,37 МПа (июль). Этот факт 

обусловлен сопряженным влиянием внешних 

и внутренних факторов, в частности наиболее 

высоких полуденных значений температуры и 

дефицита водяного пара в воздухе в июле от-

носительно таковых в мае–июне, что приводит 

к усилению степени дегидратации ксилемы 

вследствие, вероятно, превышения расхода 

влаги на транспирацию над ее поступлением 

из почвы по мере снижения запасов влаги в 

корнеобитаемом слое почвы в течение засуш-

ливого лета 2024 г. Увеличение водного дефи-

цита в летний период также можно объяснить 

сезонным ростом дневного градиента ΔΨ во 

всех группах БГЦ, диапазон значений которого 

составил в мае, июне и июле 0,41–0,64, 0,64–

0,79 и 0,75–1,07 МПа соответственно. Вместе 

с тем сравнительный анализ влияния влажно-

сти и температуры почвы на величину ΔΨ охво-

енных побегов деревьев всех исследуемых 

сосняков полигона в мае–июле 2024 г. выявил 

более существенную зависимость показателя 

от температуры почвы относительно ее влаго-

обеспеченности (рис. 5), что связано, вероят-

но, с большей контрастностью температурного 

режима почвы, а именно более высокой измен-

чивостью температуры почвы (в 2,5–4 раза) по 

сравнению с ее влажностью (в 1,3–2 раза) для 

разных групп сосняков в отмеченный период. 

Наиболее низкие значения температуры поч-

вы за вегетационный период у всех групп БГЦ 

отмечены в мае (3,1–6,6 °С) относительно тако-

вых в июне (9,0–11,7 °С) и июле (12,1–16,5 °С). 

Рис. 5. Зависимость дневного градиента водного потенциала (ΔΨ) охвоенных 

побегов Pinus sylvestris всех групп сосновых биогеоценозов тестового полиго-

на от влажности и температуры почвы в период с мая по июль 2024 г. Приве-

дены линия регрессии и 95% доверительный интервал

Fig. 5. Dependence of daily water potential gradient (ΔΨ) of foliated shoots of Pinus 

sylvestris of all groups of pine biogeocenoses of the test polygon on soil moisture 

and temperature in the period from May to July 2024. The regression line and 95% 

confidence interval are given
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Холодные почвы в мае на фоне более высоких 

величин дневной температуры воздуха (> 10 °С) 

лимитируют водопоглощение, поступление 

воды в крону и потери влаги на транспирацию, 

что убедительно показано в ряде исследова-

ний об ингибирующем действии низкой тем-

пературы почвы в начале вегетационного пе-

риода на интенсивность транспирации у хвой-

ных видов древесных растений [Wieser et al., 

2015; Liu et al., 2016]. И напротив, прогретые 

почвы в летние месяцы способствуют метабо-

лической активности корней и влагообеспе-

ченности растений в целом при более высоких 

транспирационных расходах влаги, что приво-

дит к сезонному росту дневного градиента ΔΨ 

во всех группах БГЦ.

Сравнительный анализ влияния контрастных 

условий разных групп сосновых биогеоценозов 

тестового полигона и месяца исследований на 

показатели водного обмена охвоенных побегов 

сосны выявил в целом значимое влияние обоих 

факторов и их взаимодействия на исследуемые 

параметры за двухлетний период (табл.). При 

этом в 2023 г., отличившемся экстремальными 

июльскими осадками, более заметное влияние 

на величину Ψ
max

 и Ψ
min

 оказали биогеоценоти-

ческие условия разных групп сосняков. В усло-

виях вегетационного периода 2024 г. с дефици-

том осадков оба фактора оказали практически 

равное влияние на величину Ψ
max

, тогда как на 

величину Ψ
min

 большее влияние оказало сов-

местное действие двух факторов.

Важно отметить, что формирование водно-

го дефицита у растений является нормальным 

явлением, поскольку клетки наземных расте-

ний, как правило, не бывают насыщены водой. 

Вместе с тем его значительное увеличение 

лимитируется устьичной регуляцией транспи-

рационных расходов влаги [Martinez-Vilalta, 

Garcia-Forner, 2017; Bucci et al., 2019; Buckley, 

2019; Knipfer et al., 2020] и возрастанием во-

доудерживающей способности тканей расте-

ния [Cabon et al., 2020; Peters et al., 2021], что 

и обеспечивает поддержание величины Ψ в 

физиологически допустимых пределах. Значе-

ния Ψ ниже –1 МПа оказывают ингибирующее 

действие на активность камбия и радиальный 

рост деревьев [Muller et al., 2011; Cabon et al., 

2020]. В периоды «атмосферных засух» при 

нарастании в полуденные часы водного дефи-

цита в хвое сосны (Ψ
min

 –1,3…–1,5 МПа) отме-

чают снижение интенсивности фотосинтеза в 

1,5 раза по сравнению с таковой при хорошей 

влагообеспеченности растений [Сазонова и 

др., 2017]. В ряде исследований параметров 

водообмена показан вклад радиальных пото-

ков воды между ксилемой, флоэмой и живыми 

клетками паренхимы, которые обеспечивают 

растение некоторой буферной емкостью для 

смягчения колебаний между транспирацией 

листа и поступлением воды в корень [Sevanto et 

al., 2011; Pfautsch et al., 2015]. Также отмечают 

видоспецифичность критического порога по-

тери влаги, который связывают с величиной Ψ, 

индуцирующего потерю гидравлической про-

водимости ксилемы ствола у хвойных на 50 % 

[Brodribb, Cochard, 2009], у лиственных видов 

древесных растений на 80 % [Urli et al., 2013]. 

Сосна обыкновенная среди хвойных видов 

бореальной зоны Евразии отличается наи-

более широкой экологической амплитудой, 

способна заселять как экстремально сухие, 

Результаты двухфакторного дисперсионного анализа влияния условий разных групп сосновых биогеоцено-

зов (БГЦ) и месяца исследований на показатели водного обмена охвоенных побегов Pinus sylvestris в вегета-

ционный период 2023 г. (над чертой) и 2024 г. (под чертой) 

Results of two-way ANOVA for the effect of conditions of different groups of pine biogeocenoses (BGC) and month 

of study on water metabolism parameters of shoots in Pinus sylvestris during the growing season of 2023 (above the 

line) and 2024 (below the line)

Показатель

Parameter

Факторы

Factors

Взаимодействие факторов

Interaction of factors

группа БГЦ

biogeocenosis

месяц исследования

month of study
группа БГЦ ґ

Ψ
max

 
41***1______ 

27***

26***______ 

24***

29***______ 

16***Ψ
min

52***______ 

25***

2**______ 

13***

42***______ 

48***

Примечание. 1 Доля объясненной дисперсии (SS
x
/SS

общ 
× 100, %) и уровень значимости (*р < 0,05; **р < 0,01; ***р < 0,001). Ψmax

 – предрассветный водный потенциал охвоенного побега; Ψmin
 – полуденный водный потенциал охвоенного побега.

Note. 1Proportion of explained variance (SSx/SS
total

 × 100, %) and significance level (*p < 0.05; **p < 0.01; ***p < 0.001). Ψmax
 – 

predawn water potential of shoot; Ψmin
 – midday water potential of shoot.
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так и переувлажненные экотопы [Martínez-Vilal-

ta et al., 2009; Рысин, 2015]. Наши многолетние 

исследования показателей СО
2
/Н

2
О-газообме-

на сосны обыкновенной в разных экологиче-

ских условиях среднетаежной подзоны Каре-

лии [Сазонова, Придача, 2015, 2020; Сазонова 

и др., 2017, 2019] показали, что у сосны огра-

ничение транспирационных расходов влаги по-

средством закрытия устьиц начинается при 

значениях Ψ
min

 –1,0…–1,1 МПа. Реализация 

максимального за сутки фотосинтеза у сосны 

отмечена в достаточно широком диапазоне ве-

личин Ψ
min

 (–0,7…–1,1 МПа), среднее значение 

которого составило –0,9 ± 0,1 МПа [Сазонова и 

др., 2017]. Анализ суточной динамики водного 

потенциала охвоенных побегов сосны молодо-

го (25–35 лет), среднего (45–55 лет) и более 

старшего (60–80 лет) возраста в благоприят-

ных условиях почвенного увлажнения в сосня-

ке черничном позволил выявить постоянство 

диапазонов значений Ψ
max

 (–0,3…–0,7 МПа) и Ψ
min

 (–0,65…–1,5 МПа) [Сазонова и др., 2011, 

2017]. Полученные в нашем исследовании в пе-

риод вегетации с разными гидротермическими 

условиями в 2023 и 2024 гг. значения Ψ
max

 и Ψ
min

 

у деревьев сосны в старовозрастных средне-

таежных сосняках черничных и брусничных, 

сформированных в разных почвенно-гидроло-

гических условиях, в целом соответствуют от-

меченному ранее диапазону водного дефицита 

сосны [Сазонова и др., 2011, 2017, 2019], что 

свидетельствует о схожей степени напряжен-

ности водообмена деревьев сосны разного 

возраста и высоты. Этот факт, вероятно, мож-

но объяснить адаптивной стратегией растений, 

направленной на гомеостатирование их вод-

ного статуса, которое реализуется посредст-

вом координации устьичной и гидравлической 

проводимости [Martínez-Vilalta, Garcia-Forner, 

2017; Chen et al., 2022] для поддержания вод-

ного потенциала у деревьев сосны разного 

возраста и высоты в физиологически прием-

лемых пределах. Подобное гидравлическое 

гомеостатирование у деревьев разной высоты 

и возраста ранее показано для Pinus pinaster 

[Delzon et al., 2004], P. sylvestris [Martínez-Vilalta 

et al., 2007] и P. densiflora [Azuma et al., 2019]. 

Также поддержание гидравлического гомео-

стаза между потерей и поглощением воды у 

высоких деревьев обеспечивают структурные 

изменения проводящих тканей растений, в 

частности увеличение диаметра проводящих 

элементов [Pfautsch, 2016; Olson et al., 2018; 

Fernández-de-Uña et al., 2023]. Вместе с тем 

следует отметить изменчивость показателя Ψ 

у разных видов сосен. Так, например, у взро-

слых деревьев P. canariensis в зависимости 

от высоты над уровнем моря и количества 

осадков величина Ψ составила –0,3…–2,5 МПа 

[Gieger, Leuschner, 2004]. У взрослых деревьев 

P. palustris в течение года диапазон значений Ψ составил –0,8…–1,8 МПа [Addington et al., 

2004]. В работе H. Cochard с соавторами [2004] 

отмечали развитие водного стресса у разных 

видов Pinus spp. при значениях Ψ, которые из-

менялись от –1,8 МПа (P. nigra) и –2,6 МПа 

(P. sylvestris) до –3,4…–3,5 МПа (P. mugo, 

P. cembra). Полученные нами в вегетацион-

ные периоды 2023 и 2024 гг. (отличающиеся в 

отдельные сроки разными гидротермически-

ми условиями) величины Ψ
max

 и Ψ
min

 у взрослых 

деревьев P. sylvestris в разных группах БГЦ те-

стового полигона соответствуют отмеченному 

широкому диапазону показателей водообмена 

для Pinus spp.

Заключение

Проведенное в течение двух контрастных по 

гидротермическим условиям вегетационных 

периодов 2023 и 2024 гг. исследование измен-

чивости величин предрассветных и полуден-

ных водных потенциалов охвоенных побегов у 

170-летних деревьев сосны, произрастающих 

в разных лесорастительных условиях, позво-

лило оценить влияние экологических факторов 

на показатели водообмена хвойного дерева. 

Показано в целом значимое влияние биогеоце-

нотических особенностей произрастания и по-

годных условий, а также их взаимодействия на 

исследуемые параметры взрослых деревьев за 

двухлетний период. Сопоставление данных ис-

следования и наших ранее полученных резуль-

татов для деревьев сосны разного возраста в 

разных экологических условиях среднетаежной 

подзоны Карелии [Сазонова и др., 2011, 2017, 

2019; Сазонова, Придача, 2015, 2020] устано-

вило схожую степень напряженности водооб-

мена деревьев сосны разного возраста и вы-

соты. Выявление особенностей взаимосвязи 

анатомических признаков и гидравлических ха-

рактеристик вторичной ксилемы и их координа-

ции с показателями СО
2
/Н

2
О-газообмена, спо-

собствующих, очевидно, гомеостатированию 

водного статуса взрослых деревьев в пере-

стойных сосновых насаждениях, представляет 

перспективу для дальнейшего исследования. 

Полученные показатели могут быть использо-

ваны в качестве входных параметров в матема-

тических моделях продукционного процесса и 

водного цикла наземных экосистем для опре-

деления возможного отклика CO
2
/H

2
O бюджета 

таежных лесных экосистем на будущие клима-

тические изменения.
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