Оценка возможности увеличения биомассы и продуктов синтеза у родов Spirulina и Arthrospira (Cyanophyta) после криоконсервации

Дарья Игоревна Петрухина, Daria Petrukhina, Daria Petrukhina

Аннотация


Исследовали состав компонентов питательных сред для рекультивирования цианобактерий Arthrospira platensis и Spirulina subsalsa после их длительной криоконсервации. Оценивали биологические закономерности роста и биосинтетической активности цианобактерий (продукции биомассы, липидов, белка и сахаров, фенольных соединений) в присутствии различных макро- и микроэлементов. Добавление ретентата молочной сыворотки к разбавленной питательной среде Заррука способствует повышению прироста биомассы цианобактерий A. platensis (от 8,4 до 25,5 %) и S. subsalsa (от 5,2 до 28,7 %) после криоконсервации по сравнению с выращиванием без добавления ретентата. В данных условиях выращивания увеличивалось содержание фенольных соединений в биомассе цианобактерий: в 1,4–,8 раза у S. subsalsa и в 1,8–,4 раза у A. platensis. Содержание липидов варьировало в биомассе S. subsalsa с 9,67 до 15,39 %, A. platensis – с 11,01 до 13,01 % при применении оригинального либо модифицированного ретентата молочной сыворотки. Применение модифицированного ретентата молочной сыворотки позволило увеличить содержание общего белка и редуцирующих сахаров в биомассе S. subsalsa на 14,67 и 4,69 %, а A. platensis – на 11,99 и 9,16 % соответственно по сравнению с оригинальным ретентатом молочной сыворотки. Сделан вывод о том, что разбавленная среда Заррука с добавлением 2,0 % модифицированного либо оригинального ретентата сыворотки может использоваться для выращивания цианобактерий после криоконсервации.


Ключевые слова


цианобактерии; прирост биомассы; биосинтетическая активность; макро- и микроэлементы.

Полный текст:

PDF

Литература


Abd El-Baky H. H. A., El Baz F. K., El-Baroty G. S. Production of phenolic compounds from Spirulina maxima microalgae and its protective effects // Afr. J. Biotechnol. 2009. Vol. 8, nо. 24. P. 7059–7067.

Belay A., Kato T., Ota Y. Spirulina (Arthrospira): potential application as an animal feed supplement // J. Appl. Phycol. 1996. Vol. 8, nо. 4–5. P. 303–311. doi: 10.1007/BF02178573

Bradford M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding // Anal. Biochem. 1976. Vol. 72, nо. 1–2. P. 248–254. doi: 10.1016/0003-2697(76)90527-3

Cantú-Lozano D., Molina-Quintero M., Del Bianchi V. L. Organic load removal of cheese whey in a photobioreactor of rotating disks with Spirulina platensis // Poster presented at XVII National Congress of Biotechnology and Bioengineering. Sociedad Mexicana de Biotecnología y Bioingeniería A. C. (Cancun, June, 23−28, 2013). Cancun, Mexico, 2013.

Chang W. T., Lee M., Den W. Simultaneous carbon capture, biomass production, and diary wastewater purification by Spirulina maxima photobioreaction // Ind. Eng. Chem. Res. 2013. Vol. 52, nо. 5. P. 2046–2055. doi: 10.1021/ie301932v

Chen Zh., Wang L., Qiu Sh., Ge Sh. Determination of microalgal lipid content and fatty acid for biofuel production // BioMed Res. Int. 2018. Vol. 2018. 17 p. doi: 10.1155/2018/1503126

Colla L. M., Furlong E. B., Vieira Costa J. A. Antioxidant properties of Spirulina (Arthospira) platensiscultivated under different temperatures and nitrogen regimes // Braz. Arch. Biol. Tech. 2007a. Vol. 50, nо. 1. P. 161–167. doi: 10.1590/S1516-89132007000100020

Colla L. M., Reinehr Ch. O., Reichert C., Vieira Costa J. A. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes // Bioresource Tech. 2007b. Vol. 98. P. 1489–1493. doi: 10.1016/j.biortech.2005.09.030

Converti A., Scapazzoni S., Lodi A., Carvalho J. C. M. Ammonium and urea removal by Spirulina platensis // J. Ind. Microbiol. Biotechnol. 2006. Vol. 33, no. 1. P. 8–16. doi: 10.1007/s10295‑005‑0025‑8

Eriksen N. T. Production of phycocyanin – a pigment with applications in biology, biotechnology, foods and medicine // Appl. Microbiol. Biotechnol. 2008. Vol. 80, no. 1. P. 1–14. doi: 10.1007/s00253‑008‑1542‑y

Golmakani M.‑T., Rezaei K., Mazidi S., Razavi S. H. Effect of alternative C2 carbon sources on the growth, lipid, and γ-linolenic acid production of spirulina (Arthrospira platensis) // Food Sci. Biotechnol. 2012. Vol. 21, nо. 2. P. 355–363. doi: 10.1007/s10068‑012‑0047‑8

Joshi M., Kaur K., Mishra T., Singh S. To evaluate Lab-scale Cultivation of Spirulina by using different substrates and to evaluate its chlorophyll and protein content // Int. Res. J. Biol. Sci. 2014. Vol. 3, nо. 1. P. 22–30.

Knight J. A., Anderson S., Rawle J. M. Chemical basis of the sulfo-phosphovanillin reaction for estimating total serum lipids // Clinical Chem. 1972. Vol. 18, nо. 3. P. 199–202.

Koru E. Earth Food Spirulina (Arthrospira): Production and quality standards // Food Additive. 2012. P. 191–202. doi: 10.5772/31848

Loftus S. E., Johnson Z. I. Cross-study analysis of factors affecting algae cultivation in recycled medium for biofuel production // Algal Res. 2017. Vol. 24, pt. A. P. 154–166. doi: 10.1016/j.algal.2017.03.007

Madkour F. F., Kamil A. El-W., Nasr H. S. Production and nutritive value of Spirulina platensis in reduced cost media // Egypt. J. Aquatic Res. 2012. Vol. 38. P. 51–57. doi: 10.1016/j.ejar.2012.09.003

Margarites A. C. F., Costa J. A. V. Increment of carbohydrate

concentration of Chlorella minutissima microalgae for bioethanol production // Int. J. Eng. Res. Appl. 2014. Vol. 4, nо. 11 (ver. 3). P. 80–86.

Markou G., Angelidaki I., Nerantzis E., Georgakakis D. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis // Energies. 2013. Vol. 6. P. 3937–3950. doi: 10.3390/en6083937

Mezzomo N., Saggiorato A. G., Siebert R., Tatsch P. O., Lago M. C., Hemkemeier M., Costa J. A. V., Bertolin T. E., Colla L. M. Cultivation of microalgae Spirulina platensis (Arthrospira platensis) from biological treatment of swine wastewater // Ciência e tecnologia de alimentos. 2010. Vol. 30, no. 1. P. 173–178. doi: 10.1590/S0101-20612010000100026

Miller G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar // Anal. Chem. 1959. Vol. 31. P. 426–428. doi: 10.1021/ac60147a030

Morocho-Jácome A. L., Mascioli G. F., Sato S., de Carvalho J. C. M. Evaluation of physicochemical treatment conditions for the reuse of a spent growth medium in Arthrospira platensis cultivation// Algal Res. 2016a. Vol. 13. P. 159–166. doi: 10.1016/j.algal.2015.11.022

Morocho-Jácome A. L., Sato S., de Carvalho J. C. M. Ferric sulfate coagulation and powdered activated carbon adsorption as simultaneous treatment to reuse the medium in Arthrospira platensis cultivation // J. Chem. Technol. Biot. 2016b. Vol. 91, no. 4. P. 901–910. doi: 10.1002/jctb.4655

Olguín E., Galicia S., Angulo-Guerrero O. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste // Bioresource Technol. 2001. Vol. 77. P. 19–24. doi: 10.1016/S0960-8524(00)00142-5

Raoof B., Kaushik B. D., Prasanna R. Formulation of a low-cost medium for mass production of Spirulina // Biomass and Bioenergy. 2006. Vol. 30. P. 537–542. doi: 10.1016/j.biombioe.2005.09.006

Sili C., Torzillo G., Vonshak A. Arthrospira (Spirulina). Ecology of cyanobacteria II: their diversity in space and time / Ed. B. Whitton. New York; London: Springer Dordrecht Heidelberg, 2012. P. 677–705. doi: 10.1007/978‑94‑007‑3855‑3_25

Singleton V. L., Orthofer R., Lamuela-Raventós R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent // Methods in Enzymology. Academic Press, 1999. Vol. 299. P. 152–178. doi: 10.1016/

S0076-6879(99)99017-1

Singleton V. L., Rossi J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents // Am. J. Enol. Vitic. 1965. Vol. 16. P. 144–153.

Vieira Salla A. C., Margarites A. C., Seibel F. I., Holz L. C., Brião V. B., Bertolin T. E., Colla L. M., Vieira Costa J. A. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate // Bioresource Technol. 2016. Vol. 209. P. 133–141. doi: 10.1016/j.biortech.2016.02.069

Vonshak A. Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. London: CRC Press, 2002. 252 p.

Zöllner N., Kirsch K. Z. Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulfophosphovanillin-Reaktion // Zeitschrift für die gesamte experimentelle Medizin. 1962. Vol. 135, nо. 6. P. 545–561.

References in English

Abd El-Baky H. H. A., El Baz F. K., El-Baroty G. S. Production of phenolic compounds from Spirulina maxima microalgae and its protective effects. Afr. J. Biotechnol. 2009. Vol. 8, nо. 24. P. 7059–7067.

Belay A., Kato T., Ota Y. Spirulina (Arthrospira): potential application as an animal feed supplement. J. Appl. Phycol. 1996. Vol. 8, nо. 4–5. P. 303–311. doi: 10.1007/BF02178573

Bradford M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 1976. Vol. 72, nо. 1–2. P. 248–254. doi: 10.1016/0003-2697(76)90527-3

Cantú-Lozano D., Molina-Quintero M., Del Bianchi V. L. Organic load removal of cheese whey in a photobioreactor of rotating disks with Spirulina platensis. Poster presented at XVII National Congress of Biotechnology and Bioengineering. Sociedad

Mexicana de Biotecnología y Bioingeniería A. C. (Cancun, June, 23−28, 2013). Cancun, Mexico, 2013.

Chang W. T., Lee M., Den W. Simultaneous carbon capture, biomass production, and diary wastewater purification by Spirulina maxima photobioreaction. Ind. Eng. Chem. Res. 2013. Vol. 52, nо. 5. P. 2046–2055. doi: 10.1021/ie301932v

Chen Zh., Wang L., Qiu Sh., Ge Sh. Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Res. Int. 2018. Vol. 2018. 17 p. doi: 10.1155/2018/1503126

Colla L. M., Furlong E. B., Vieira Costa J. A. Antioxidant properties of Spirulina (Arthospira) platensis cultivated under different temperatures and nitrogen regimes. Braz. Arch. Biol. Tech. 2007a. Vol. 50, nо. 1. P. 161–167. doi: 10.1590/S1516-89132007000100020

Colla L. M., Reinehr Ch. O., Reichert C., Vieira Costa J. A. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Tech. 2007b. Vol. 98. P. 1489–1493. doi: 10.1016/j.biortech.2005.09.030

Converti A., Scapazzoni S., Lodi A., Carvalho J. C. M. Ammonium and urea removal by Spirulina platensis. J. Ind. Microbiol. Biotechnol. 2006. Vol. 33, no. 1. P. 8–16. doi: 10.1007/s10295‑005‑0025‑8

Eriksen N. T. Production of phycocyanin – a pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol. 2008. Vol. 80, no. 1. P. 1–14. doi: 10.1007/s00253‑008‑1542‑y

Golmakani M.‑T., Rezaei K., Mazidi S., Razavi S. H. Effect of alternative C2 carbon sources on the growth, lipid, and γ-linolenic acid production of spirulina (Arthrospira platensis). Food Sci. Biotechnol. 2012. Vol. 21, nо. 2. P. 355–363. doi: 10.1007/s10068‑012‑0047‑8

Joshi M., Kaur K., Mishra T., Singh S. To evaluate Lab-scale Cultivation of Spirulina by using different substrates and to evaluate its chlorophyll and protein content. Int. Res. J. Biol. Sci. 2014. Vol. 3, nо. 1. P. 1–9.

Knight J. A., Anderson S., Rawle J. M. Chemical basis of the sulfo-phosphovanillin reaction for estimating total serum lipids. Clinical Chem. 1972. Vol. 18, nо. 3. P. 199–202.

Koru E. Earth Food Spirulina (Arthrospira): Production and quality standards. Food Additive. 2012. P. 191–202. doi: 10.5772/31848

Loftus S. E., Johnson Z. I. Cross-study analysis of factors affecting algae cultivation in recycled medium for biofuel production. Algal Res. 2017. Vol. 24, pt A. P. 154–166. doi: 10.1016/j.algal.2017.03.007

Madkour F. F., Kamil A. El-W., Nasr H. S. Production and nutritive value of Spirulina platensis in reduced cost media. Egypt. J. Aquatic Res. 2012. Vol. 38. P. 51–57. doi: 10.1016/j.ejar.2012.09.003

Margarites A. C. F., Costa J. A. V. Increment of carbohydrate

concentration of Chlorella minutissima microalgae for bioethanol production. Int. J. Eng. Res. Appl. 2014. Vol. 4, nо. 11 (ver. 3). P. 80–86.

Markou G., Angelidaki I., Nerantzis E., Georgakakis D. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies. 2013. Vol. 6. P. 3937–3950. doi: 10.3390/en6083937

Mezzomo N., Saggiorato A. G., Siebert R., Tatsch P. O., Lago M. C., Hemkemeier M., Costa J. A. V., Bertolin T. E., Colla L. M. Cultivation of microalgae Spirulina platensis (Arthrospira platensis) from biological treatment of swine wastewater. Ciência e tecnologia de alimentos. 2010. Vol. 30, no. 1. P. 173–178. doi: 10.1590/S0101-20612010000100026

Miller G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959. Vol. 31. P. 426–428. doi: 10.1021/ac60147a030

Morocho-Jácome A. L., Mascioli G. F., Sato S., de Carvalho J. C. M. Evaluation of physicochemical treatment conditions for the reuse of a spent growth medium in Arthrospira platensis cultivation. Algal Res. 2016a. Vol. 13. P. 159–166. doi: 10.1016/j.algal.2015.11.022

Morocho-Jácome A. L., Sato S., de Carvalho J. C. M. Ferric sulfate coagulation and powdered activated carbon adsorption as simultaneous treatment to reuse the medium in Arthrospira platensis cultivation. J. Chem. Technol. Biot. 2016b. Vol. 91, no. 4. P. 901–910. doi: 10.1002/jctb.4655

Olguín E., Galicia S., Angulo-Guerrero O. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresource Technol. 2001. Vol. 77. P. 19–24. doi: 10.1016/S0960-8524(00)00142-5

Raoof B., Kaushik B. D., Prasanna R. Formulation of a low-cost medium for mass production of Spirulina. Biomass and Bioenergy. 2006. Vol. 30. P. 537–542. doi: 10.1016/j.biombioe.2005.09.006

Sili C., Torzillo G., Vonshak A. Arthrospira (Spirulina). Ecology of cyanobacteria II: their diversity in space and time. Eds. B. Whitton. New York; London: Springer Dordrecht Heidelberg, 2012. P. 677–705. doi: 10.1007/978‑94‑007‑3855‑3_25

Singleton V. L., Orthofer R., Lamuela-Raventós R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. Academic Press, 1999. Vol. 299. P. 152–178. doi: 10.1016/S0076-6879(99)99017-1

Singleton V. L., Rossi J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965. Vol. 16. P. 144–153.

Vieira Salla A. C., Margarites A. C., Seibel F. I., Holz L. C., Brião V. B., Bertolin T. E., Colla L. M., Vieira Costa J. A. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresource Technol. 2016. Vol. 209. P. 133–141. doi: 10.1016/j.biortech.2016.02.069

Vonshak A. Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. London: CRC Press, 2002. 252 p.

Zöllner N., Kirsch K. Z. Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulfophosphovanillin-Reaktion. Zeitschrift für die gesamte experimentelle Medizin. 1962. Vol. 135, nо. 6. P. 545–561.




DOI: http://dx.doi.org/10.17076/eb905

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019