АКТИВНОСТЬ NA+/K+-АТФазы В РАЗЛИЧНЫХ ОРГАНАХ СТЕРЛЯДИ (ACIPENSER RUTHENUS L.) ПРИ ИЗМЕНЕНИИ ФАКТОРОВ СРЕДЫ

Елена Ивановна Кяйвяряйнен, Нина Николаевна Немова, Elena Kaivarainen, Nina Nemova

Аннотация


Исследования механизмов регуляции ионно-солевого и кислотно-щелочного равновесия в организме молоди стерляди особую актуальность приобретают в связи с возможной ее акклимацией к среде обитания с меняющейся соленостью и кислотностью. В аквариальных условиях были проведены две серии экспериментов по влиянию солености и рН среды на активность Na+/K+ -АТФазы в жабрах и мышцах сеголеток стерляди Acipenser ruthenus L. (средней массой ~ 50 граммов): в первой серии молодь стерляди выращивали в трех аквариумах с различной концентрацией соли –0,3 (контроль), 3 и 6 ‰); во второй –молодь рыб содержалась в воде с концентрацией соли 0,3 ‰ и в трех аквариумах с различными значениями рН: 7,0; 8,0 и 9,0. В жабрах и мышцах рыб обнаружено достоверное (р < 0,05) увеличение активности Na+/К+ -АТФазы при возрастании солености среды до 6 ‰, а при повышении рН воды в аквариумах до 9,0 активность фермента достоверно (р < 0,05)снижалась. Показано, что одним из важных механизмов биохимической адаптации молоди стерляди, направленной на поддержание гомеостаза при акклимации к изменению солености и рН среды обитания, является активация/реактивация Na+/K+ -АТФазы в жабрах и мышцах рыб. 


Ключевые слова


соленость; влияние рН; Acipenser ruthenus L.; Na+/K+-АТФаза.

Полный текст:

PDF

Литература


Алекин О. А. Основы гидрохимии. Л.: Гидрометеоиздат, 1970. 414 с.

Бергер В. Я. Адаптации морских моллюсков к изменениям солености. Л.: Наука, 1986. 216 с.

Болдырев А. А., Кяйвяряйнен Е. И., Илюха В. А. Биомембранология: уч. пособие / Ред. С. А. Чепурнов. Петрозаводск: КарНЦ РАН, 2006. 226 с.

Виноградов Г. А. Процессы ионной регуляции у пресноводных рыб и беспозвоночных. М.: Наука, 2000. 216 с.

Гублер Е. В., Генкин А. А. Применение критериев непараметрической статистики для оценки различий двух групп наблюдений в медико-биологических исследованиях. М.: Медицина, 1969. С. 9–11, 24.

Елаев Н. Р., Семенов Е. В. Изменение активности мембранных АТФаз мозга при воздействии холино- и адреномиметических веществ. Биохимия. 1974. Т. 39, вып. 3. С. 42–46.

Касимов Р. Ю. Сравнительная характеристика поведения дикой и заводской молоди осетровых в раннем онтогенезе. Баку: Элм, 1980. С. 636–640.

Китаев С. П. Основы лимнологии для гидробиологов и ихтиологов. Петрозаводск: КарНЦ РАН, 2007. 395 с.

Кузьмичев С. А. Особенности осморегуляции у некоторых видов осетровых рыб при повышении солености: Дис. … канд. биол. наук. М., 2005. 116 c.

Матей В. Е. Жабры пресноводных костистых рыб. Морфофункциональная организация, адаптация, эволюция. СПб.: Наука, 1996. 204 с.

Моисеенко Т. И. Закисление вод: Факторы, механизмы и экологические последствия. М.: Наука, 2003. 276 с.

Наточин Ю. В., Лукьяненко В. И., Лаврова Е. А., Металлов Г. Ф. Обмен магния у русского осетра при различной солености // Вопр. ихтиол. 1980. Т. 20, № 5. С. 892–900.

Немова Н. Н., Высоцкая Р. У. Биохимическая индикация состояния рыб. М.: Наука, 2004. 215 с.

Скадовский C. Н. Экологическая физиология водных организмов. М.: Сов. наука, 1955. 338 с.

Хлебович В. В. Очерки экологии особи. СПб.: ЗИН РАН, 2012. 143 с.

Хочачка П., Сомеро Дж. Стратегия биохимической адаптации. М.: Мир, 1977. 296 c.

Amiri B. M., Baker D. W., Morgan J. D., Brauner C. J. Size dependent early salinity tolerance in two sizes of juvenile white sturgeon, Acipenser transmontanus // Aquacult. 2009. Vol. 286. P. 121–126. doi:10.1016/j.aquaculture.2008.08.037

Atli G., Canli M. Metals (Ag(+), Cd(2+), Cr(6+)) affect ATPase activity in the gill, kidney, and muscle of freshwater fish Oreochromis niloticus following acute and chronic exposures // Environ. Toxicol. 2013. Vol. 28, no. 12. P. 707–717. doi: 10.1002/tox.20766

Baker D. W., Matey V., Huynh K. T., Wilson J. M., Morgan J. D., Brauner C. J. Complete intracellular pH protection during extracellular pH depression is associated with hypercarbia tolerance in white sturgeon, Acipenser transmontanus // Am. J. Physiol. 2009. Vol. 296. P. 1868–1880. doi: 10.1152/ajpregu.

2008

Boyd C. E. Water quality for pond aquaculture. Research and development series 43 / International Center for Aquaculture and Aquatic Environments, Auburn, Alabama. 1998.

Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantitaties of protein utilising the principal of protein binding // Analyt. Biochem. 1976. Vol. 72. P. 248–254.

Canfield V. A., Loppin B., Thisse B., Thisse C., Postlethwait J. H., Mohideen M.‑A. P. K., Rajarao S. J. R., Levenson R. Na, K-ATPase a and β subunit genes exhibit unique expression patterns during zebrafish embryogenesis // Mech. Devel. 2002. Vol. 116. P. 51–59. doi:10.1016/S0925-4773(02)00135-1

Choe K. P., Morrison-Shetlar A. I., Wall B. P., Claiborne J. B. Immunological detection of Na+/H+-exchangers in the gills of a hagfish, Myxine glutinosa, an elasmobranch, Raja erinacea, and a teleost, Fundulus heteroclitus // Comp. Biochem. Phys. A Phys. 2002. Vol. 131. P. 375–385. doi: 10.1016/S1095-6433(01)00491-3

Doĝanli C., Kjaer-Sorensen K., Knoeckel Ch., Beck H. Ch., Nyengaard J. R., Honore B., Nissen P., Ribera A., Oxvig C., Lykke-Hartmann K. The a2Na+/K+-ATPase is critical for skeletal and heart muscle function in zebrafish // J. Cell Sci. 2012. Vol. 125. P. 6166–6175. doi: 10.1242/jcs.115808

Evans D., Piermarini P., Choe K. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste // Phys. Rev. 2005. Vol. 85. P. 97–177. doi:10.1152/physrev.00050.2003

Fenner R. M. The Conscientious Marine Aquarist. A Commonsense Handbook for Successful Saltwater Hobbyists. Neptune City, New Jersey, USA: TFH Publ. Inc., 2001. 430 p.

Fiol F., Kültz D. Osmotic stress sending and signaling in fishes. FEBS J. 2007. Vol. 274, no. 22. P. 5790–5798. doi: 10.1111/j.

-4658.2007.060099.x

Folmar L. C., Dickhoff W. W. The parr-smolt transformation

(smoltification) and seawater adaptation in salmonids // Aquacult. 1980. Vol. 21. P. 1–37. doi: 10.1016/0044-8486(80)90123-4

Heydarnejad M. S. Survival and growth of common carp (Cyprinus carpio L.) exposed to different water pH levels // Turkey J. Veter. Anim. Sci. 2012. Vol. 36, no. 3. P. 245–249. doi: 10.3906/vet-1008-430

Hirata T., Kaneko T., Ono T., Nakazato T., Furukawa N., Hasegawa S., Wakabayashi S., Shigekawa M., Chang M. H., Romero M. F., Hirose S. Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003. Vol. 284, no. 5. P. 1199–212. doi: 10.1152/ajpregu.00267.2002

Kahovcova J., Odavic R. A simple method of the quantitative analysis of phospholipids separated by thin layer chromatography // J. Chromatogr. 1969. Vol. 40, no. 1. P. 90–96.

Kulac B., Atli G., Canli M. Response of ATPases in the osmoregulatory tissues of freshwaterfish Oreochromis niloticus exposed to copper in increased salinity // Fish Physiol. Biochem. 2013. Vol. 39, no. 2. P. 391–401. doi: 10.1007/s10695‑012‑9707‑0

Kültz D. Physiological mechanisms used by fish to cope with salinity stress // J. Exp. Biol. 2015. Vol. 218. P. 1907–1914. doi: 10.1242/jeb.118695

Kültz D., Bastrop R., Jurss K., Siebers D. Mitochondria-rich (MR) cells and the activities of the Na+/K+-ATPase and carbonic anhydrase in the gill and opercular epithelium of Oreochromis mossambicus adapted to various salinities // Comp. Biochem. Phys. B Comp. Biochem. 1992. Vol. 102. P. 293–301. doi:

1016/0305-0491(92)90125‑B

McCormick S. D., Sundell K., Bjornsson B. T., Brown C. L., Hiroi J. Influence of salinity on the localization of Na+/K+-ATPase, Na+/K+/2Cl– cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis) // J. Exp. Biol. 2003. Vol. 206. P. 4575–4583. doi: 10.1242/jeb.

Oseni K. Acute and sub lethal effect of potassium cyanide on the behaviour and ATPase enzyme activity in the freshwater fish, Clarias gariepinus (Catfish) // International Letters of Natural Sci. 2015. Vol. 49. P. 50–57. doi: 10.18052/www.scipress.com/ILNS. 49.50

Salama A., Morgan I. J., Wood C. M. The linkage between Na uptake and ammonia excretion in rainbow trout: kinetic analysis, the effects of (NH4)2SO4 and NH4HCO3 infusion and the influence of gill boundary layer pH // J. Exp. Biol. 1999. Vol. 202. P. 697–709.

Shaughnessy C. A., Baker D. W., Brauner C. J., Morgan J. D., Bystriansky J. S. Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity // J. Exp. Biol. 2015. Vol. 218. P. 2712–2719. doi: 10.1242/jeb.

Skou J. C. The influence of some cations on an adenosine

triphosphatase from peripheral nerves // Biochim. Biophys. Acta. 1957. Vol. 23, no. 2. P. 394–401.

Tipsmark C. K., Madsen S. S., Seidelin M., Christensen A. S., Cutler C. P., Cramb G. Dynamics of Na+, K+, 2Cl-Cotransporter and Na+/K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) // J. Exp. Zool. 2002. Vol. 293. P. 106–118. doi: 10.1002/jez.10118

Wang Y. S., Gonzalez R. J., Patrick M. L., Grosell M., Zhang C., Feng Q., Du J. Z., Walsh P. J., Wood C. M. Unusual physiology of scale-less carp, Gymnocypris przewalskii, in Lake Qinghai: a high altitude alkaline saline lake // Comp. Biochem. Phys. A Mol. Integr. Phys. 2003. Vol. 134. P. 409–421. doi: 10.1016/S1095-6433(02)00317-3

Wilkie M. P. Ammonia excretion and urea handling by fishes gills: present under standing and future research challenges // J. Exp. Zool. 2002. Vol. 293. P. 284–301. doi: 10.1002/jez.

Wilkie M. P., Wood C. M. The adaptations of fish to extremely alkaline environments // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1996. Vol. 113. P. 665–673. doi: 10.1016/0305-0491(95)02092-6

Wilkie M. P., Wright P. A., Iwama G. K., Wood C. M. The physiological responses of the Lahontan cutthroat trout (Oncorhynchus clarki henshawi), a resident of highly alkaline Pyramid Lake (pH 9.4), to challenge at pH 10 // J. Exp. Biol. 1993. Vol. 175. P. 173–194.

Wilson R. W., Wilson J. M., Grosell M. Intestinal bicarbonate secretion by marine teleost fish – why and how? Biochimica et Biophysica Acta (BBA) – Biomembranes. 2002. Vol. 1566. P. 182–193. doi: 10.1016/S0005-2736(02)00600-4

Wood C. M. The physiological problems of fish in acid waters // In: Morris R., Taylor E. W., Brown D. J. A. and Brown J. A. (eds). Acid Toxicity and Aquatic Animals. Cambridge: Cambridge University Press, 1989. P. 125–152.

Wood C. M., Du J. Z., Rogers J., Brauner C. J., Richards J. G., Semple J. W., Murray B. W., Chen X. Q., Wang X. Przewalski’s naked carp (Gymnocypris przewalskii): an endangered species taking a metabolic holiday in Lake Qinghai, China // Phys. Biochem. Zool. 2007. Vol. 80. P. 59–77. doi: 10.1086/509212

Zweig R. D., Morton J. D., Stewart M. M. Source water quality for aquaculture. The World Bank, Washington, DC. 1999.

References in English

Alekin O. A. Osnovy gidrokhimii [Basic hydrochemistry]. Leningrad: Gidrometeoizdat, 1970. 412 p. Berger V. Ya. Adaptatsiya morskikh mollyuskov k izmeneniyam solenosti [Adaptation of marine molluscs to salinity changes]. Leningrad: Nauka, 1986. 216 p.

Boldyrev A. А., Kaivarainen E. I., Ilyukha V. А. Biomembranologia: uch. posobie [Biomembranology: tutorial].

Petrozavodsk: KarRC RAS, 2006. 226 p.

Elaev N. R., Semenov E. V. Izmenenie aktivnosti membrannykh ATPas mozga pri vozdeistvii kholino- i adrenomimeticheskikh

veshchestv [Changes in the activity of brain membrane ATPases under the influence of choline- and adrenomimetic substances]. Biokhim. [Biochem.]. 1974. Vol. 39, no. 3. P. 42–46.

Gubler E. V., Genkin A. A. Primenenie kriteriev neparametricheskoi statistiki dlya otsenki razlichii dvukh grupp nablyudenii v mediko-biologicheskikh issledovaniyakh[Application of nonparametric statistic criteria to assess differences in the two groups of observations in biomedical research]. Мoscow: Meditsina, 1969. P. 9–11, 24.

Kasimov R. Yu. Sravnitel’naya kharakteristika povedeniya dikoi i zavodskoi molodi osetrovykh v rannem ontogeneze[Comparative characteristics of wild and plant young sturgeon behavior in early ontogenesis]. Baku: ELM, 1980. P. 636–640.

Khlebovich V. V. Ocherki ekologii osobi [Essays on the ecology of the individual]. St. Petersburg: ZIN RAN, 2012. 143 p.

Khochachka P., Somero J. Strategiya biokhimicheskoi adaptatsii [Strategy of biochemical adaptation]. Moscow: Mir, 1977. 296 p.

Kitaev S. P. Osnovy limnologii dlya gidrobiologov i ikhtiologov [Basics of limnology for hydrobiologists and ichthyologists]. Petrozavodsк: KarRC RAS, 2007. 395 p.

Kuz’michev S. A. Osobennosti osmoregulyatsii u nekotorykh vidov osetrovykh ryb pri povyshenii solenosti [Features of osmoregulation in some species of sturgeon with increasing salinity]: DSc (Cand. of Biol.) thesis. Moscow, 2005. 116 p.

Matei V. E. Zhabry presnovodnykh kostistykh ryb. Morfofunktsional’naya organizatsiya, adaptatsiya, evolyutsiya

[Gills of freshwater teleosts. Morphofunctional organization, adaptation, evolution]. St. Petersburg: Nauka, 1996. 204 p.

Moiseenko T. I. Zakislenie vod: factory, mekhanizmy i ekologicheskie posledstviya [Water acidification: factors,

mechanisms and environmental effects]. Moscow: Nauka, 2003. 276 p.

Natochin Yu. V., Luk’yanenko V. I., Lavrova E. A., Metallov G. F. Obmen magniya u russkogo osetra pri razlichnoi solenosti [Exchange of magnesium from Russian sturgeon at different salinity]. Vopr. ikhtiol. [Russ. J. Ichthyol.]. 1980. Vol. 20, no. 5. P. 892–900.

Nemova N. N., Vysotskaya R. Yu. Biokhimicheskaya indikatsiya sostoyaniya ryb [Biochemical indication of fish status]. Moscow: Nauka, 2004. 215 p.

Skadovskii S. N. Ekologicheskaya fiziologiya vodnykh organizmov [Ecological physiology of water organisms]. Moscow: Sov. nauka, 1955. 338 p.

Vinogradov G. A. Protsessy ionnoi regulyatsii u presnovodnykh

ryb i bespozvonochnykh [The processes of ion regulation in freshwater fish and invertebrates]. Moscow: Nauka, 2000. 216 p.

Amiri B. M., Baker D. W., Morgan J. D., Brauner C. J. Size dependent early salinity tolerance in two sizes of juvenile white sturgeon, Acipenser transmontanus. Aquacult. 2009. Vol. 286. P. 121–126. doi: 10.1016/j.aquaculture.2008.08.037

Atli G., Canli M. Metals (Ag(+), Cd(2+), Cr(6+)) affect ATPase activity in the gill, kidney, and muscle of freshwater fish Oreochromis niloticus following acute and chronic exposures. Environ. Toxicol. 2013. Vol. 28, no. 12. P. 707–717. doi: 10.1002/tox.20766

Baker D. W., Matey V., Huynh K. T., Wilson J. M., Morgan J. D., Brauner C. J. Complete intracellular pH protection during extracellular pH depression is associated with hypercarbia tolerance in white sturgeon, Acipenser transmontanus. Am. J. Physiol. 2009. Vol. 296. P. 1868–1880. doi: 10.1152/ajpregu.

2008

Boyd C. E. Water quality for pond aquaculture. Research and development series 43. International Center for Aquaculture and Aquatic Environments, Auburn, Alabama.1998.

Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantitaties of protein utilising the principal of protein binding. Analyt. Biochem. 1976. Vol. 72. P. 248–254.

Canfield V. A., Loppin B., Thisse B., Thisse C., Postlethwait

J. H., Mohideen M.‑A. P. K., Rajarao S. J. R., Levenson R. Na, K-ATPase a and β subunit genes exhibit unique expression patterns during zebrafish embryogenesis. Mech. Develop. 2002. Vol. 116. P. 51–59. doi: 10.1016/S0925-4773(02)00135-1

Choe K. P., Morrison-Shetlar A. I., Wall B. P., Claiborne J. B. Immunological detection of Na+/H+-exchangers in the gills of a hagfish, Myxine glutinosa, an elasmobranch, Raja erinacea, and a teleost, Fundulus heteroclits. Comp. Biochem. Phys. A Phys. 2002. Vol. 131. P. 375–385. doi: 10.1016/S1095-6433(01)00491-3

Doĝanli C., Kjaer-Sorensen K., Knoeckel Ch., Beck H. Ch., Nyengaard J. R., Honore B., Nissen P., Ribera A., Oxvig C., Lykke-Hartmann K. The a2Na+/K+-ATPase is critical for skeletal and heart muscle function in zebrafish. J. Cell Sci. 2012. Vol. 125. P. 6166–6175. doi: 10.1242/jcs.115808

Evans D., Piermarini P., Choe K. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Phys. Rev. 2005. Vol. 85. P. 97–177. doi: 10.1152/physrev.00050.2003

Fenner R. M. The Conscientious Marine Aquarist. A Commonsense Handbook for Successful Saltwater Hobbyists. Neptune City, New Jersey, USA: TFH Publications Inc., 2001. 430 p.

Fiol F., Kültz D. Osmotic stress sending and signaling in fishes. FEBS J. 2007. Vol. 274, no. 22. P. 5790–5798. doi: 10.1111/j.

-4658.2007.060099.x

Folmar L. C., Dickhoff W. W. The parr-smolt transformation

(smoltification) and seawater adaptation in salmonids. Aquacult. 1980. Vol. 21. P. 1–37. doi: 10.1016/0044-8486(80)90123-4

Heydarnejad M. S. Survival and growth of common carp (Cyprinus carpio L.) exposed to different water pH levels. Turkey J. Veter. Anim. Sci. 2012. Vol. 36, no. 3. P. 245–249. doi: 10.3906/vet-1008-430

Hirata T., Kaneko T., Ono T., Nakazato T., Furukawa N., Hasegawa S., Wakabayashi S., Shigekawa M., Chang M. H., Romero M. F., Hirose S. Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003. Vol. 284, no. 5. P. 1199–1212. doi: 10.1152/ajpregu.00267.2002

Kahovcova J., Odavic R. A simple method of the quantitative analysis of phospholipids separated by thin layer chromatography. J. Chromatogr. 1969. Vol. 40, no. 1. P. 90–96.

Kulac B., Atli G., Canli M. Response of ATPases in the osmoregulatory tissues of freshwaterfish Oreochromis niloticus exposed to copper in increased salinity. Fish Physiol. Biochem. 2013. Vol. 39, no. 2. P. 391–401. doi: 10.1007/s10695‑012‑9707‑0

Kültz D. Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Biol. 2015. Vol. 218. P. 1907–1914. doi: 10.1242/jeb.118695

Kültz D., Bastrop R., Jurss K., Siebers D. Mitochondria-rich (MR) cells and the activities of the Na+/K+-ATPase and carbonic anhydrase in the gill and opercular epithelium of Oreochromis mossambicus adapted to various salinities. Comp. Biochem. Phys. B Comp. Biochem. 1992. Vol. 102. P. 293–301. doi:

1016/0305-0491(92)90125‑B

McCormick S. D., Sundell K., Bjornsson B. T., Brown C. L., Hiroi J. Influence of salinity on the localization of Na+/K+-ATPase, Na+/K+/2Cl– cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis). J. Exp. Biol. 2003. Vol. 206. P. 4575–4583. doi: 10.1242/jeb.

Oseni K. Acute and sub lethal effect of potassium cyanide on the behaviour and ATPase enzyme activity in the freshwater fish, Clarias gariepinus (Catfish). International Letters of Natural Sci. 2015. Vol. 49. P. 50–57. doi:10.18052/www.scipress.com/ILNS. 49.50

Salama A., Morgan I. J., Wood C. M. The linkage between Na uptake and ammonia excretion in rainbow trout: kinetic analysis, the effects of (NH4)2SO4 and NH4HCO3 infusion and the influence of gill boundary layer pH. J. Exp. Biol. 1999. Vol. 202. P. 697–709.

Shaughnessy C. A., Baker D. W., Brauner C. J., Morgan J. D., Bystriansky J. S. Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity. J. Exp. Biol. 2015. Vol. 218. P. 2712–2719. doi: 10.1242/jeb.

Skou J. C. The influence of some cations on an adenosine

triphosphatase from peripheral nerves. Biochim. Biophys. Acta. 1957. Vol. 23, no. 2. P. 394–401.

Tipsmark C. K., Madsen S. S., Seidelin M., Christensen A. S., Cutler C. P., Cramb G. Dynamics of Na+, K+, 2Cl- Cotransporter and Na+/K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). J. Exp. Zool. 2002. Vol. 293. P. 106–118. doi: 10.1002/jez.10118

Wang Y. S., Gonzalez R. J., Patrick M. L., Grosell M., Zhang C., Feng Q., Du J. Z., Walsh P. J, Wood C. M. Unusual physiology of scale-less carp, Gymnocypris przewalskii, in Lake Qinghai: a high altitude alkaline saline lake. Comp. Biochem. Phys. A Mol. Integr. Phys. 2003. Vol. 134. P. 409–421. doi: 10.1016/

S1095-6433(02)00317-3

Wilkie M. P. Ammonia excretion and urea handling by fishes gills: present under standing and future research challenges. J. Exp. Zool. 2002. Vol. 293. P. 284–301. doi: 10.1002/jez.

Wilkie M. P., Wood C. M. The adaptations of fish to extremely alkaline environments. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1996. Vol. 113. P. 665–673. doi: 10.1016/0305-0491(95)02092-6

Wilkie M. P., Wright P. A., Iwama G. K., Wood C. M. The physiological responses of the Lahontan cutthroat trout (Oncorhynchus clarki henshawi), a resident of highly alkaline Pyramid Lake (pH 9.4), to challenge at pH 10. J. Exp. Biol. 1993. Vol. 175. P. 173–194.

Wilson R. W., Wilson J. M., Grosell M. Intestinal bicarbonate secretion by marine teleost fish – why and how? Biochimica et Biophysica Acta (BBA) – Biomembranes. 2002. Vol. 1566. P. 182–193. doi:10.1016/S0005-2736(02)00600-4

Wood C. M. The physiological problems of fish in acid waters In: Morris R., Taylor E. W., Brown D. J. A. and Brown J. A. (eds). Acid Toxicity and Aquatic Animals. Cambridge: Cambridge University Press, 1989. P. 125–152.

Wood C. M., Du J. Z., Rogers J., Brauner C. J., Richards J. G., Semple J. W., Murray B. W., Chen X. Q., Wang X. Przewalski’s naked carp (Gymnocypris przewalskii): an endangered species taking a metabolic holiday in Lake Qinghai, China. Phys. Biochem. Zool. 2007. Vol. 80. P. 59–77. doi: 10.1086/509212

Zweig R. D., Morton J. D., Stewart M. M. Source water quality for aquaculture. The World Bank, Washington, DC. 1999.




DOI: http://dx.doi.org/10.17076/eb881

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019