ТРАНСПОРТНЫЕ БЕЛКИ СЕМЕЙСТВА SLC22. МОЛЕКУЛЯРНОЕ РАЗНООБРАЗИЕ, СТРОЕНИЕ, ФУНКЦИЯ, УЧАСТИЕ В ФУНКЦИОНИРОВАНИИ СИСТЕМЫ БИОТРАНСФОРМАЦИИ КСЕНОБИОТИКОВ У ЖИВОТНЫХ

Лев Павлович Смирнов, Ирина Викторовна Суховская, Екатерина Витальевна Борвинская, Lev Smirnov, Irina Sukhovskaya, Ekaterina Borvinskaya

Аннотация


Подсемейство транспортеров органических анионов (ОАТ), которое составляет примерно половину белков семейства SLC22, входящего в состав суперсемейства MFS транспортеров, привлекает большое внимание исследователей в связи с активным участием ОАТ в обмене эндогенных метаболитов, различных лекарственных средств, токсинов, молекул пищевого происхождения. ОАТ экспрессируются во многих органах, включая почки, печень, обонятельную слизистую, мозг, сетчатку глаза и плаценту. В настоящее время известно 10 ОАТ, из которых у человека найдено семь, а у грызунов восемь. ОАТ можно рассматривать как часть эволюционно консервативной системы, защищающей высшие организмы от потенциально токсичных соединений, появляющихся в окружающей среде. Полипептидная цепь ОАТ состоит из 536-556 аминокислотных остатков. Характерной особенностью вторичной структуры молекулы является наличие 12 трансмембранных спиралей, внутриклеточная локализация N и С-концевых участков молекулы, большая внеклеточная петля между1 и 2 доменами и большая внутриклеточная петля, связывающая 6 и 7 домены.  Ядерные рецепторы, такие как Hnf4α и Hnf1α, регулируют экспрессию ОАТ во взаимосвязи с ферментами фаз I и II биотрансформации (DME). Взаимосвязь между ОАТ и DME в тканях играет существенную роль с точки зрения образования и инактивации ключевых метаболитов, сигнальных молекул, разного рода токсинов. Согласно гипотезе дистанционного опознавания и сигнализации (Remote Sensing and Signaling Hypothesis) ОАТ участвуют в дистанционной межорганной коммуникации путем регуляции уровней сигнальных молекул и ключевых метаболитов в тканях и жидкостях. ОАТ также могут играть определенную роль в коммуникации между организмами путем транспорта небольших молекул через кишечник, плаценту, в грудное молоко и летучих молекул, обладающих сигнальными свойствами, через мочу.


Ключевые слова


ОАТ; переносчики органических анионов; филогения; биотрансформация ксенобиотиков

Полный текст:

PDF

Литература


Ahn S.Y., Nigam S.K. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol Pharmacol. 2009. Vol. 76. P. 481–490. doi: 10.1124/mol.109.056564.

Ahn S. Y., Eraly S. A., Tsigelny I., Nigam S. K. Interaction of organic cations with organic anion transporters. J Biol Chem. 2009. Vol. 284. P. 31422–31430. doi: 10.1074/jbc.M109.024489.

Anderson C. M., Thwaites D. T. Hijacking solute carriers for proton-coupled drug transport. Physiology. 2010.Vol. 25. P. 364–377.

Anzai N., Jutabha P., Enomoto A., Yokoyama H., Nonoguchi H., Hirata T., Shiraya K., HeX., Cha S.H., Takeda M., Miyazaki H., Sakata T., Tomita K., Igarashi T., Kanai Y., Endou H. Functional characterization of rat organic anion transporter 5 (Slc22a19) at the apical membrane of renal proximal tubules. J Pharmacol Exp Ther. 2005.Vol. 315. P. 534–544. doi: 10.1124/jpet.105.088583.

Asif A. R., Steffgen J., Metten M., Grunewald R. W., Muller G. A., Bahn A., et al. Presence of organic anion transporters 3 (OAT3) and 4 (OAT4) in human adrenocortical cells. Pflugers Archiv. 2005. Vol. 450. P. 88–95. doi: 10.1007/s00424-004-1373-3.

Aslamkhan A., Han Y. H., Walden R., Sweet D. H., Pritchard J. B. Stoichiometry of organic anion/dicarboxylate exchange in membrane vesicles from rat renal cortex and hOAT1-expressing cells. American Journal of Physiology. Renal Physiology.2003. Vol. 285. P. F775–F783. doi: 10.1152/ajprenal.00140.2003

Astorga B., Wunz T. M., Morales M., Wright S. H., Pelis R. M. Differences in the substrate binding regions of renal organic anion transporters 1 (OAT1) and 3(OAT3). American Journal of Physiology. Renal Physiology. 2011. Vol. 301.Р. F378–F386. doi: 10.1152/ajprenal.00735.2010.

Bahn A., Hagos Y., Reuter S., Balen D., Brzica H., Krick W., Burckhardt B.C., Sabolic I., Burckhardt G. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem. 2008. Vol. 283. P. 16332–16341. doi: 10.1074/jbc.M800737200.

Bates L. A., Sayialel K. N., Njiraini N. W., Poole J. H., Moss C. J., Byrne R. W. African elephants have expectations about the locations of out-of-sight family members. Biol Lett. 2008. Vol. 4. P. 34–36. doi: 10.1098/rsbl.2007.0529.

Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, et al. The rainbow trout genome provides novel insights into evolution after whole genome duplication in vertebrates. Nat Commun. 2014. Vol. 5. P. 3657. doi: 10.1038/ncomms4657.

Brzica H., Breljak D., Ljubojevic M., Balen D., Micek V., Anzai N., et al. Optimal methods of antigen retrieval for organic anion transporters in cryosections of the rat kidney. Arhiv za Higijenu Rada I Toksikologiju. 2009. Vol. 60. P. 7–17.

Burckhardt G. Drug transport by Organic Anion Transporters (OATs). Pharmacology & Therapeutics. 2012. Vol. 136.P. 106–130. doi: 10.1016/j.pharmthera.2012.07.010.

Burckhardt B. C., Wolff N. A., Burckhardt G. Electrophysiologic characterization of an organic anion transporter cloned from winter flounder kidney (fROAT). Journal of the American Society of Nephrology. 2000. Vol. 11. Р. 9–17.

Cha S. H., Sekine T., Kusuhara H., Yu E., Kim J. Y., Kim D. K., et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem. 2000. Vol. 275, P. 4507–4512.

Cha, S. H., Sekine, T., Fukushima, J. I., Kanai, Y., Kobayashi, Y., Goya, T., et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Molecular Pharmacology. 2001. Vol. 59.P. 1277–1286.

Chang A. B., Lin R., Studley W. K., Tran C. V., Saier M. H., Jr. Phylogeny as a guide to structure and function of membrane transport proteins (Review). Mol. Membr. Biol. 2004. Vol. 21 P. 171-181. doi: 10.1080/09687680410001720830.

Ekaratanawong S., Anzai N., Jutabha P., Miyazaki H., Noshiro R., Takeda M., et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. Journal of Pharmacological Sciences. 2004. Vol. 94.P. 297–304.

Enomoto A., Takeda M., Shimoda M., Narikawa S., Kobayashi Y., Kobayashi Y., et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. Journal of Pharmacology and Experimental Therapeutics. 2002. Vol. 301. P. 797–802.

Eraly S. A., Hamilton B. A., Nigam S. K. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem Biophys Res Commun. 2003.Vol. 300.P. 333–342.

Eraly S.A., Vallon V., Rieg T., Gangoiti J.A., Wikoff W. R., Siuzdak G., Barshop B. A., Nigam S. K. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics. 2008. Vol. 33. P. 180–192. doi: 10.1152/physiolgenomics.00207.2007.

Hagos Y., Stein D., Ugele B., Burckhardt G., Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. Journal of the American Society of Nephrology. 2007. Vol. 18. P. 430–439. doi: 10.1681/ASN.2006040415.

Hosoyamada M., Sekine T., Kanai Y., Endou H. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. American Journal of Physiology. 1999. Vol. 276. P. F122–F128.

Hosoyamada M., Takiue Y., Morisaki H., Cheng J., Ikawa M., Okabe M., Morisaki T., Ichida K., Hosoya T., Shibasaki T. Establishment and analysis of SLC22A12 (URAT1) knockout mouse. Nucleosides Nucleotides Nucleic Acids. 2010. Vol. 29. P. 314–320. doi: 10.1080/15257771003738634.

Howe K., Clark M. D., Torroja C. F., Torrance J., Berthelot C., Muffato M., Collins J. E., Humphray S., McLaren K., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013. Vol. 496. P. 498–503. doi: 10.1038/nature12111.

Jacobsson J. A., Haitina T., Lindblom J., Fredriksson R. Identification of sixputative human transporters with structural similarity to the drug transporterSLC22 family. Genomics. 2007. Vol. 90. P. 595–609. doi: 10.1016/j.ygeno.2007.03.017.

Kaler G., Truong D. M., Sweeney D. E., Logan D. W., Nagle M., Wu W., Eraly S.A., Nigam S.K. Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem Biophys Res Commun. 2006. Vol. 351. P. 872–876. doi: 10.1016/j.bbrc.2006.10.136.

Kaler G., Truong D. M., Khandelwal A., Nagle M., Eraly S. A, Swaan P. W., Nigam S. K. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J Biol Chem. 2007. Vol. 282 P. 23841–23853. doi: 10.1074/jbc.M703467200.

Klein K., Jungst C., Mwinyi J., Stieger B., Krempler F., Patsch W., Eloranta J. J., Kullak-Ublick G .A. The human organic anion transporter genes OAT5 and OAT7 are transactivated by hepatocyte nuclear factor-1 alpha (HNF-1 alpha). Mol Pharm. 2010. Vol. 78. P. 1079–1087. doi: 10.1124/mol.110.065201.

Kobayashi Y., Ohshiro N., Sakai R., Ohbayashi M., Kohyama N., Yamamoto T. Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). The Journal of Pharmacy and Pharmacology. 2005. Vol. 57. P. 573–578. doi: 10.1211/0022357055966.

Koepsell H.,•Endou H. The SLC22 drug transporter family. Pflugers Arch - Eur J Physiol. 2004. Vol. 447. P. 666–676. doi: 10.1007/s00424-003-1089-9.

Lee K.L., Jung S.M., Kwak J.O., Cha S.H. Introduction of organic anion transporters (SLC22A) and a regulatory mechanism by caveolins. Electrolyte Blood Press. 2006. Vol. 4. P. 8–17. doi: 10.5049/EBP.2006.4.1.8.

Martovetsky G., Tee J. B., Nigam S. K. Hepatocyte nuclear factors 4α and 1α (Hnf4α and Hnf1α) regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters. Mol Pharmacol. 2013. Vol. 84. P. 808–823. doi: 10.1124/mol.113.088229.

Mihaljevic I., Popovic M., Zaja R., Smital T. Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio). BMC Genomics. 2016. Vol. 17. P. 626 - 639.

Miyazaki H., Anzai N., Ekaratanawong S., Sakata T., Shin H. J., Jutabha P., et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain containing proteins. Journal of the American Society of Nephrology. 2005. Vol. 16. P. 3498–3506. doi: 10.1681/ASN.2005030306.

Monte J.C., Nagle M.A., Eraly S.A., Nigam S.K. Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem Biophys Res Commun. 2004. Vol. 323. P. 429–436. doi: 10.1016/j.bbrc.2004.08.112.

Mori K., Ogawa Y., Ebihara K., Aoki T., Tamura N., Sugawara A., Kuwahara T., Ozaki S., Mukoyama M., Tashiro K., Tanaka I., Nakao K. Kidney-specific expression of a novel mouse organic cation transporter-like protein. FEBS Lett. 1997. Vol. 417. P, 371–374.

Motohashi H., Sakurai Y., Saito H., Masuda S., Urakami Y., Goto M., et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. Journal of the American Society of Nephrology. 2002. Vol. 13. P. 866–874.

Nigam SK, Bush KT, Bhatnagar V. Drug and toxicant handling by the OAT organic anion transporters in the kidney and other tissues. Nat Clin Pract Nephrol. 2007. Vol.3. P. 443–448. doi: 10.1038/ncpneph0558.

Nigam S.K., Bush K.T., Martovetsky G., Ahn S.-Y., Liu H.C., Richard E., Bhatnagar V., Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol. Rev. 2015. Vol. 95. P. 83-123. doi: 10.1152/physrev.00025.2013.

Nishiwaki T., Daigo Y., Tamari M., Fujii Y., Nakamura Y. Molecular cloning, mapping, and characterization of two novel human genes, ORCTL3 and ORCTL4, bearing homology to organic-cation transporters. Cytogenet Cell Genet. 1998. Vol. 83. P. 251–255. doi: 15197.

Pelis R. M., Wright S. H. SLC22, SLC44, and SLC47 Transporters — Organic Anion and Cation Transporters: Molecular and Cellular Properties. Current Topics in Membranes. 2014. Vol. 73. P. 233-261. doi: 10.1016/B978-0-12-800223-0.00006-2.

Perry J. L., Dembla-Rajpal N., Hall L. A., Pritchard J. B. A three-dimensional model of human organic anion transporter 1: Aromatic amino acids required for substrate transport. J Biol Chem. 2006. 281. Р. 38071–38079. doi: 10.1074/jbc.M608834200.

Reddy V. S., Shlykov M. A., Castillo R., Sun E. I., Saier M. H. Jr. The major facilitator superfamily (MFS) revised. The FEBS Journal. 2012. Vol. 279. P. 2022-2035. doi: 10.1111/j.1742-4658.2012.08588.x.

Rizwan A. N., Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007. Vol. 24. P. 450–70. doi: 10.1007/s11095-006-9181-4.

Rizwan A. N., Krick W., Burckhardt G. The chloride dependence of the human organic anion transporter 1 (hOAT1) is blunted by mutation of a single amino acid. J Biol Chem. 2007. Vol. 282. P. 13402–13409. doi: 10.1074/jbc.M609849200.

Saier M. H. Jr., Beatty J. T., Goffeau A., Harley K. T., Heijne W.H. M., Huang S.-C., Jack D. L., Jahn P. S., Lew K., Liu J., PaoS. S., Paulsen I. T., Tseng T.-T., Virk P. S. The major facilitator superfamily. J. Mol. Microbiol. Biotechnol. 1999. Vol. 1. P. 257 - 279.

Saier M. H. Jr, Reddy V. S., Tamang D. G., Vastermark A. The transporter classification database. Nucleic Acids Res. 2014. Vol. 42. P. D251-258. doi: 10.1093/nar/gkt1097.

Sato M., Mamada H., Anzai N., Shirasaka Y., Nakanishi T., Tamai I. Renal Secretion of Uric Acid by Organic Anion Transporter 2 (OAT2/SLC22A7) in Human. Biol Pharm Bull. 2010. Vol. 33. P. 498–503.

Schnabolk G. W., Youngblood G. L., Sweet D. H. Transport of estrone sulfate by the novel organic anion transporter Oat6 (Slc22a20). Am J Physiol Renal Physiol. 2006. Vol. 291 P. F314–F321. doi: 10.1152/ajprenal.00497.2005.

Schnabolk G.W., Gupta B., Mulgaonkar A., Kulkarni M., Sweet D.H. Organic anion transporter6 (Slc22a20) specificity and Sertoli cell-specific expression provide new insight on potential endogenous roles. J Pharmacol Exp Ther. 2010. Vol. 334. P. 927–935. doi: 10.1124/jpet.110.168765.

Shen H., Liu T., Morse B. L., Zhao Y., Zhang Y., Qiu X., Chen C., Lewin A. C., Tang X. T., Liu G., Christopher L. J., Marathe P, Lai Y. Characterization of organic anion transporter 2 (SLC22A7): a highly efficient transporter for creatinine and species-dependent renal tubular expression. Drug Metab Dispos. 2015. Vol. 43. P. 984–93. doi: 10.1124/dmd.114.062364.

Sherborne A. L., Thom M. D., Paterson S., Jury F., Ollier W. E., Stockley P., Beynon R. J.,Hurst J. L. The genetic basis of inbreeding avoidance in house mice. Curr Biol. 2007. Vol. 17 P. 2061–2066. doi:10.1016/j.cub.2007.10.041.

Simonson G. D., Vincent A. C., Roberg K. J., Huang Y., Iwanij V. Molecular cloning and characterization of a novel liver-specific transport protein. Journal of Cell Science. 1994. Vol. 107. P. 3–72.

Srimaroeng C., Perry J. L., Pritchard J. B. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica. 2008. Vol. 38.P. 889–935. doi: 10.1080/00498250801927435.

Sun W., Wu R. R., van Poelje P. D., Erion M. D. Isolation of a family of organic aniontransporters from human liver and kidney. Biochem Biophys Res Commun. 2001. Vol.283. P. 417–422. doi: 10.1006/bbrc.2001.4774.

Sweet D. H., Chan L. M., Walden R., Yang X. P., Miller D. S., Pritchard J. B. Organic anion transporter 3 [Slc22a8] is a dicarboxylate exchanger indirectly coupled to the Na+ gradient // American Journal of Physiology. Renal Physiology. 2003. Vol. 284. P. F763–F769. doi:

1152/ajprenal.00405.2002.

Tanaka, K., Xu, W., Zhou, F., You G. Role of glycosylation in the organic anion transporter OAT1. J Biol Chem. 2004a. Vol. 279. Р. 14961–14966. doi: 10.1074/jbc.M400197200.

Tanaka K., Zhou F., Kuze K., You G. Cysteine residues in the organic anion transporter mOAT1. Biochemical Journal. 2004b. Vol. 380.P. 283–287. doi:10.1042/BJ20031724.

Thiebaud N., Menetrier F., Belloir C., Minn A.L., Neiers F., Artur Y., Le Bon A.M., Heydel J. M. Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium. Neurosci Lett. 2011. Vol. 505. P. 180–185. doi: 10.1016/j.neulet.2011.10.018.

Tsuchida H., Anzai N., Shin H.J., Wempe M.F., Jutabha P., Enomoto A., Cha S.H., Satoh T., Ishida M., Sakurai H., Endou H. Identification of a novel organic anion transporter mediating carnitine transport in mouse liver and kidney. Cell Physiol Biochem. 2010. Vol. 25. P. 511–522. doi: 10.1159/000303060.

Yokoyama H., Anzai N., Ljubojevic M., Ohtsu N., Sakata T., Miyazaki H., Nonoguchi H., Islam R., Onozato M., Tojo A., Tomita K., Kanai Y., Igarashi T., Sabolic I., Endou H. Functional and immunochemical characterization of a novel organic anion transporterOat8 (Slc22a9) in rat renal collecting duct. Cell Physiol Biochem. 2008. Vol. 21. P. 269 – 278. doi: 10.1159/000129385.

Youngblood G. L., Sweet D. H. Identification and functional assessment of the novelmurine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Physiol Renal Physiol. 2004. Vol. 287 P. F236–F244. doi: 10.1152/ajprenal.00012.2004.

Vallon V., Eraly S.A., Wikoff W.R., Rieg T., Kaler G., Truong D.M., Ahn S.Y., Mahapatra N.R.,Mahata S.K., Gangoiti J.A., Wu W., Barshop B.A., Siuzdak G., Nigam S.K. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol. 2008. Vol. 19. P. 1732–1740. doi: 10.1681/ASN.2008020180.

Vallon V., Eraly S. A., Rao S. R., Gerasimova M., Rose M., Nagle M., Anzai N., Smith T., Sharma K., Nigam S. K., Rieg T. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am J Physiol Renal Physiol. 2012. Vol. 302: P. F1293–F1299. doi: 10.1152/ajprenal.00013.2012.

VanWert A.L., Gionfriddo M.R., Sweet D.H. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos. 2010. Vol. 31. P. 1–71. doi: 10.1002/bdd.693.

Willse A., Belcher A.M., Preti G., Wahl J.H., Thresher M., Yang P., Yamazaki K.,Beauchamp G.K. Identification of major histocompatibility complex regulated body odorants by statistical analysis of a comparative gas chromatography/mass spectrometry experiment. Anal Chem. 2005. Vol.77. P. 2348–2361. doi: 10.1021/ac048711t.

Wikoff WR, Nagle MA, Kouznetsova VL, Tsigelny IF, Nigam SK. Untargeted metabolomicsidentifies enterobiome metabolites and putative uremic toxins as substrates oforganic anion transporter 1 (Oat1). J Proteome Res. 2011. Vol. 10. P. 2842–2851. doi: 10.1021/pr200093w.

Wu W., Baker M.E., Eraly S.A., Bush K.T., Nigam S.K. Analysis of a large cluster of SLC22transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members. Physiol Genomics. 2009. Vol. 38. P. 116–124. doi: 10.1152/physiolgenomics.90309.2008.

Wu W., Dnyanmote A.V., Nigam S.K. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol Pharmacol. 2011. Vol. 79. P. 795–805. doi: 10.1124/mol.110.070607.

Wu W., Jamshidi N., Eraly S. A., Liu H.C., Bush K. T., Palsson B. O., Nigam S. K. Multispecific drug transporter slc22a8 (oat3) regulates multiple metabolic and signaling pathways. Drug Metab Dispos. 2013. Vol. 41. P. 1825–1834. doi: 10.1124/dmd.113.052647.

Zhou F., Xu W., Hong M., Pan Z., Sinko P. J., Ma J., et al. The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter hOAT4. Molecular Pharmacology. 2005. Vol. 67. P. 868–876. doi: 10.1124/mol.104.007583.

Zhu C., Nigam K.B., Date R.C., Bush K.T.,Springer S.A., Saier M.H. Jr., Wu W., Nigam S. K. Evolutionary analysis and classification of OATs, OCTs, OCTNs, and other SLC22 transporters: structure-function implications and analysis of sequence motifs. PLoS ONE. 2015. Vol. 10(11): e0140569. doi:10.1371/journal.pone.0140569.

References in English

Ahn S.Y., Nigam S.K. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol Pharmacol. 2009. Vol. 76. P. 481–490. doi: 10.1124/mol.109.056564.

Ahn S. Y., Eraly S. A., Tsigelny I., Nigam S. K. Interaction of organic cations with organic anion transporters. J Biol Chem. 2009. Vol. 284. P. 31422–31430. doi: 10.1074/jbc.M109.024489.

Anderson C. M., Thwaites D. T. Hijacking solute carriers for proton-coupled drug transport. Physiology. 2010.Vol. 25. P. 364–377.

Anzai N., Jutabha P., Enomoto A., Yokoyama H., Nonoguchi H., Hirata T., Shiraya K., HeX., Cha S.H., Takeda M., Miyazaki H., Sakata T., Tomita K., Igarashi T., Kanai Y., Endou H. Functional characterization of rat organic anion transporter 5 (Slc22a19) at the apical membrane of renal proximal tubules. J Pharmacol Exp Ther. 2005.Vol. 315. P. 534–544. doi: 10.1124/jpet.105.088583.

Asif A. R., Steffgen J., Metten M., Grunewald R. W., Muller G. A., Bahn A., et al. Presence of organic anion transporters 3 (OAT3) and 4 (OAT4) in human adrenocortical cells. Pflugers Archiv. 2005. Vol. 450. P. 88–95. doi: 10.1007/s00424-004-1373-3.

Aslamkhan A., Han Y. H., Walden R., Sweet D. H., Pritchard J. B. Stoichiometry of organic anion/dicarboxylate exchange in membrane vesicles from rat renal cortex and hOAT1-expressing cells. American Journal of Physiology. Renal Physiology.2003. Vol. 285. P. F775–F783. doi: 10.1152/ajprenal.00140.2003

Astorga B., Wunz T. M., Morales M., Wright S. H., Pelis R. M. Differences in the substrate binding regions of renal organic anion transporters 1 (OAT1) and 3(OAT3). American Journal of Physiology. Renal Physiology. 2011. Vol. 301.Р. F378–F386. doi: 10.1152/ajprenal.00735.2010.

Bahn A., Hagos Y., Reuter S., Balen D., Brzica H., Krick W., Burckhardt B.C., Sabolic I., Burckhardt G. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem. 2008. Vol. 283. P. 16332–16341. doi: 10.1074/jbc.M800737200.

Bates L. A., Sayialel K. N., Njiraini N. W., Poole J. H., Moss C. J., Byrne R. W. African elephants have expectations about the locations of out-of-sight family members. Biol Lett. 2008. Vol. 4. P. 34–36. doi: 10.1098/rsbl.2007.0529.

Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, et al. The rainbow trout genome provides novel insights into evolution after whole genome duplication in vertebrates. Nat Commun. 2014. Vol. 5. P. 3657. doi: 10.1038/ncomms4657.

Brzica H., Breljak D., Ljubojevic M., Balen D., Micek V., Anzai N., et al. Optimal methods of antigen retrieval for organic anion transporters in cryosections of the rat kidney. Arhiv za Higijenu Rada I Toksikologiju. 2009. Vol. 60. P. 7–17.

Burckhardt G. Drug transport by Organic Anion Transporters (OATs). Pharmacology & Therapeutics. 2012. Vol. 136.P. 106–130. doi: 10.1016/j.pharmthera.2012.07.010.

Burckhardt B. C., Wolff N. A., Burckhardt G. Electrophysiologic characterization of an organic anion transporter cloned from winter flounder kidney (fROAT). Journal of the American Society of Nephrology. 2000. Vol. 11. Р. 9–17.

Cha S. H., Sekine T., Kusuhara H., Yu E., Kim J. Y., Kim D. K., et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem. 2000. Vol. 275, P. 4507–4512.

Cha, S. H., Sekine, T., Fukushima, J. I., Kanai, Y., Kobayashi, Y., Goya, T., et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Molecular Pharmacology. 2001. Vol. 59.P. 1277–1286.

Chang A. B., Lin R., Studley W. K., Tran C. V., Saier M. H., Jr. Phylogeny as a guide to structure and function of membrane transport proteins (Review). Mol. Membr. Biol. 2004. Vol. 21 P. 171-181. doi: 10.1080/09687680410001720830.

Ekaratanawong S., Anzai N., Jutabha P., Miyazaki H., Noshiro R., Takeda M., et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. Journal of Pharmacological Sciences. 2004. Vol. 94.P. 297–304.

Enomoto A., Takeda M., Shimoda M., Narikawa S., Kobayashi Y., Kobayashi Y., et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. Journal of Pharmacology and Experimental Therapeutics. 2002. Vol. 301. P. 797–802.

Eraly S. A., Hamilton B. A., Nigam S. K. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem Biophys Res Commun. 2003.Vol. 300.P. 333–342.

Eraly S.A., Vallon V., Rieg T., Gangoiti J.A., Wikoff W. R., Siuzdak G., Barshop B. A., Nigam S. K. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics. 2008. Vol. 33. P. 180–192. doi: 10.1152/physiolgenomics.00207.2007.

Hagos Y., Stein D., Ugele B., Burckhardt G., Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. Journal of the American Society of Nephrology. 2007. Vol. 18. P. 430–439. doi: 10.1681/ASN.2006040415.

Hosoyamada M., Sekine T., Kanai Y., Endou H. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. American Journal of Physiology. 1999. Vol. 276. P. F122–F128.

Hosoyamada M., Takiue Y., Morisaki H., Cheng J., Ikawa M., Okabe M., Morisaki T., Ichida K., Hosoya T., Shibasaki T. Establishment and analysis of SLC22A12 (URAT1) knockout mouse. Nucleosides Nucleotides Nucleic Acids. 2010. Vol. 29. P. 314–320. doi: 10.1080/15257771003738634.

Howe K., Clark M. D., Torroja C. F., Torrance J., Berthelot C., Muffato M., Collins J. E., Humphray S., McLaren K., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013. Vol. 496. P. 498–503. doi: 10.1038/nature12111.

Jacobsson J. A., Haitina T., Lindblom J., Fredriksson R. Identification of sixputative human transporters with structural similarity to the drug transporterSLC22 family. Genomics. 2007. Vol. 90. P. 595–609. doi: 10.1016/j.ygeno.2007.03.017.

Kaler G., Truong D. M., Sweeney D. E., Logan D. W., Nagle M., Wu W., Eraly S.A., Nigam S.K. Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem Biophys Res Commun. 2006. Vol. 351. P. 872–876. doi: 10.1016/j.bbrc.2006.10.136.

Kaler G., Truong D. M., Khandelwal A., Nagle M., Eraly S. A, Swaan P. W., Nigam S. K. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J Biol Chem. 2007. Vol. 282 P. 23841–23853. doi: 10.1074/jbc.M703467200.

Klein K., Jungst C., Mwinyi J., Stieger B., Krempler F., Patsch W., Eloranta J. J., Kullak-Ublick G .A. The human organic anion transporter genes OAT5 and OAT7 are transactivated by hepatocyte nuclear factor-1 alpha (HNF-1 alpha). Mol Pharm. 2010. Vol. 78. P. 1079–1087. doi: 10.1124/mol.110.065201.

Kobayashi Y., Ohshiro N., Sakai R., Ohbayashi M., Kohyama N., Yamamoto T. Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). The Journal of Pharmacy and Pharmacology. 2005. Vol. 57. P. 573–578. doi: 10.1211/0022357055966.

Koepsell H.,•Endou H. The SLC22 drug transporter family. Pflugers Arch - Eur J Physiol. 2004. Vol. 447. P. 666–676. doi: 10.1007/s00424-003-1089-9.

Lee K.L., Jung S.M., Kwak J.O., Cha S.H. Introduction of organic anion transporters (SLC22A) and a regulatory mechanism by caveolins. Electrolyte Blood Press. 2006. Vol. 4. P. 8–17. doi: 10.5049/EBP.2006.4.1.8.

Martovetsky G., Tee J. B., Nigam S. K. Hepatocyte nuclear factors 4α and 1α (Hnf4α and Hnf1α) regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters. Mol Pharmacol. 2013. Vol. 84. P. 808–823. doi: 10.1124/mol.113.088229.

Mihaljevic I., Popovic M., Zaja R., Smital T. Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio). BMC Genomics. 2016. Vol. 17. P. 626 - 639.

Miyazaki H., Anzai N., Ekaratanawong S., Sakata T., Shin H. J., Jutabha P., et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain containing proteins. Journal of the American Society of Nephrology. 2005. Vol. 16. P. 3498–3506. doi: 10.1681/ASN.2005030306.

Monte J.C., Nagle M.A., Eraly S.A., Nigam S.K. Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem Biophys Res Commun. 2004. Vol. 323. P. 429–436. doi: 10.1016/j.bbrc.2004.08.112.

Mori K., Ogawa Y., Ebihara K., Aoki T., Tamura N., Sugawara A., Kuwahara T., Ozaki S., Mukoyama M., Tashiro K., Tanaka I., Nakao K. Kidney-specific expression of a novel mouse organic cation transporter-like protein. FEBS Lett. 1997. Vol. 417. P, 371–374.

Motohashi H., Sakurai Y., Saito H., Masuda S., Urakami Y., Goto M., et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. Journal of the American Society of Nephrology. 2002. Vol. 13. P. 866–874.

Nigam SK, Bush KT, Bhatnagar V. Drug and toxicant handling by the OAT organic anion transporters in the kidney and other tissues. Nat Clin Pract Nephrol. 2007. Vol.3. P. 443–448. doi: 10.1038/ncpneph0558.

Nigam S.K., Bush K.T., Martovetsky G., Ahn S.-Y., Liu H.C., Richard E., Bhatnagar V., Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol. Rev. 2015. Vol. 95. P. 83-123. doi: 10.1152/physrev.00025.2013.

Nishiwaki T., Daigo Y., Tamari M., Fujii Y., Nakamura Y. Molecular cloning, mapping, and characterization of two novel human genes, ORCTL3 and ORCTL4, bearing homology to organic-cation transporters. Cytogenet Cell Genet. 1998. Vol. 83. P. 251–255. doi: 15197.

Pelis R. M., Wright S. H. SLC22, SLC44, and SLC47 Transporters — Organic Anion and Cation Transporters: Molecular and Cellular Properties. Current Topics in Membranes. 2014. Vol. 73. P. 233-261. doi: 10.1016/B978-0-12-800223-0.00006-2.

Perry J. L., Dembla-Rajpal N., Hall L. A., Pritchard J. B. A three-dimensional model of human organic anion transporter 1: Aromatic amino acids required for substrate transport. J Biol Chem. 2006. 281. Р. 38071–38079. doi: 10.1074/jbc.M608834200.

Reddy V. S., Shlykov M. A., Castillo R., Sun E. I., Saier M. H. Jr. The major facilitator superfamily (MFS) revised. The FEBS Journal. 2012. Vol. 279. P. 2022-2035. doi: 10.1111/j.1742-4658.2012.08588.x.

Rizwan A. N., Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007. Vol. 24. P. 450–70. doi: 10.1007/s11095-006-9181-4.

Rizwan A. N., Krick W., Burckhardt G. The chloride dependence of the human organic anion transporter 1 (hOAT1) is blunted by mutation of a single amino acid. J Biol Chem. 2007. Vol. 282. P. 13402–13409. doi: 10.1074/jbc.M609849200.

Saier M. H. Jr., Beatty J. T., Goffeau A., Harley K. T., Heijne W.H. M., Huang S.-C., Jack D. L., Jahn P. S., Lew K., Liu J., PaoS. S., Paulsen I. T., Tseng T.-T., Virk P. S. The major facilitator superfamily. J. Mol. Microbiol. Biotechnol. 1999. Vol. 1. P. 257 - 279.

Saier M. H. Jr, Reddy V. S., Tamang D. G., Vastermark A. The transporter classification database. Nucleic Acids Res. 2014. Vol. 42. P. D251-258. doi: 10.1093/nar/gkt1097.

Sato M., Mamada H., Anzai N., Shirasaka Y., Nakanishi T., Tamai I. Renal Secretion of Uric Acid by Organic Anion Transporter 2 (OAT2/SLC22A7) in Human. Biol Pharm Bull. 2010. Vol. 33. P. 498–503.

Schnabolk G. W., Youngblood G. L., Sweet D. H. Transport of estrone sulfate by the novel organic anion transporter Oat6 (Slc22a20). Am J Physiol Renal Physiol. 2006. Vol. 291 P. F314–F321. doi: 10.1152/ajprenal.00497.2005.

Schnabolk G.W., Gupta B., Mulgaonkar A., Kulkarni M., Sweet D.H. Organic anion transporter6 (Slc22a20) specificity and Sertoli cell-specific expression provide new insight on potential endogenous roles. J Pharmacol Exp Ther. 2010. Vol. 334. P. 927–935. doi: 10.1124/jpet.110.168765.

Shen H., Liu T., Morse B. L., Zhao Y., Zhang Y., Qiu X., Chen C., Lewin A. C., Tang X. T., Liu G., Christopher L. J., Marathe P, Lai Y. Characterization of organic anion transporter 2 (SLC22A7): a highly efficient transporter for creatinine and species-dependent renal tubular expression. Drug Metab Dispos. 2015. Vol. 43. P. 984–93. doi: 10.1124/dmd.114.062364.

Sherborne A. L., Thom M. D., Paterson S., Jury F., Ollier W. E., Stockley P., Beynon R. J.,Hurst J. L. The genetic basis of inbreeding avoidance in house mice. Curr Biol. 2007. Vol. 17 P. 2061–2066. doi:10.1016/j.cub.2007.10.041.

Simonson G. D., Vincent A. C., Roberg K. J., Huang Y., Iwanij V. Molecular cloning and characterization of a novel liver-specific transport protein. Journal of Cell Science. 1994. Vol. 107. P. 3–72.

Srimaroeng C., Perry J. L., Pritchard J. B. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica. 2008. Vol. 38.P. 889–935. doi: 10.1080/00498250801927435.

Sun W., Wu R. R., van Poelje P. D., Erion M. D. Isolation of a family of organic aniontransporters from human liver and kidney. Biochem Biophys Res Commun. 2001. Vol.283. P. 417–422. doi: 10.1006/bbrc.2001.4774.

Sweet D. H., Chan L. M., Walden R., Yang X. P., Miller D. S., Pritchard J. B. Organic anion transporter 3 [Slc22a8] is a dicarboxylate exchanger indirectly coupled to the Na+ gradient // American Journal of Physiology. Renal Physiology. 2003. Vol. 284. P. F763–F769. doi:

1152/ajprenal.00405.2002.

Tanaka, K., Xu, W., Zhou, F., You G. Role of glycosylation in the organic anion transporter OAT1. J Biol Chem. 2004a. Vol. 279. Р. 14961–14966. doi: 10.1074/jbc.M400197200.

Tanaka K., Zhou F., Kuze K., You G. Cysteine residues in the organic anion transporter mOAT1. Biochemical Journal. 2004b. Vol. 380.P. 283–287. doi:10.1042/BJ20031724.

Thiebaud N., Menetrier F., Belloir C., Minn A.L., Neiers F., Artur Y., Le Bon A.M., Heydel J. M. Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium. Neurosci Lett. 2011. Vol. 505. P. 180–185. doi: 10.1016/j.neulet.2011.10.018.

Tsuchida H., Anzai N., Shin H.J., Wempe M.F., Jutabha P., Enomoto A., Cha S.H., Satoh T., Ishida M., Sakurai H., Endou H. Identification of a novel organic anion transporter mediating carnitine transport in mouse liver and kidney. Cell Physiol Biochem. 2010. Vol. 25. P. 511–522. doi: 10.1159/000303060.

Yokoyama H., Anzai N., Ljubojevic M., Ohtsu N., Sakata T., Miyazaki H., Nonoguchi H., Islam R., Onozato M., Tojo A., Tomita K., Kanai Y., Igarashi T., Sabolic I., Endou H. Functional and immunochemical characterization of a novel organic anion transporterOat8 (Slc22a9) in rat renal collecting duct. Cell Physiol Biochem. 2008. Vol. 21. P. 269 – 278. doi: 10.1159/000129385.

Youngblood G. L., Sweet D. H. Identification and functional assessment of the novelmurine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Physiol Renal Physiol. 2004. Vol. 287 P. F236–F244. doi: 10.1152/ajprenal.00012.2004.

Vallon V., Eraly S.A., Wikoff W.R., Rieg T., Kaler G., Truong D.M., Ahn S.Y., Mahapatra N.R.,Mahata S.K., Gangoiti J.A., Wu W., Barshop B.A., Siuzdak G., Nigam S.K. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol. 2008. Vol. 19. P. 1732–1740. doi: 10.1681/ASN.2008020180.

Vallon V., Eraly S. A., Rao S. R., Gerasimova M., Rose M., Nagle M., Anzai N., Smith T., Sharma K., Nigam S. K., Rieg T. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am J Physiol Renal Physiol. 2012. Vol. 302: P. F1293–F1299. doi: 10.1152/ajprenal.00013.2012.

VanWert A.L., Gionfriddo M.R., Sweet D.H. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos. 2010. Vol. 31. P. 1–71. doi: 10.1002/bdd.693.

Willse A., Belcher A.M., Preti G., Wahl J.H., Thresher M., Yang P., Yamazaki K.,Beauchamp G.K. Identification of major histocompatibility complex regulated body odorants by statistical analysis of a comparative gas chromatography/mass spectrometry experiment. Anal Chem. 2005. Vol.77. P. 2348–2361. doi: 10.1021/ac048711t.

Wikoff WR, Nagle MA, Kouznetsova VL, Tsigelny IF, Nigam SK. Untargeted metabolomicsidentifies enterobiome metabolites and putative uremic toxins as substrates oforganic anion transporter 1 (Oat1). J Proteome Res. 2011. Vol. 10. P. 2842–2851. doi: 10.1021/pr200093w.

Wu W., Baker M.E., Eraly S.A., Bush K.T., Nigam S.K. Analysis of a large cluster of SLC22transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members. Physiol Genomics. 2009. Vol. 38. P. 116–124. doi: 10.1152/physiolgenomics.90309.2008.

Wu W., Dnyanmote A.V., Nigam S.K. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol Pharmacol. 2011. Vol. 79. P. 795–805. doi: 10.1124/mol.110.070607.

Wu W., Jamshidi N., Eraly S. A., Liu H.C., Bush K. T., Palsson B. O., Nigam S. K. Multispecific drug transporter slc22a8 (oat3) regulates multiple metabolic and signaling pathways. Drug Metab Dispos. 2013. Vol. 41. P. 1825–1834. doi: 10.1124/dmd.113.052647.

Zhou F., Xu W., Hong M., Pan Z., Sinko P. J., Ma J., et al. The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter hOAT4. Molecular Pharmacology. 2005. Vol. 67. P. 868–876. doi: 10.1124/mol.104.007583.

Zhu C., Nigam K.B., Date R.C., Bush K.T.,Springer S.A., Saier M.H. Jr., Wu W., Nigam S. K. Evolutionary analysis and classification of OATs, OCTs, OCTNs, and other SLC22 transporters: structure-function implications and analysis of sequence motifs. PLoS ONE. 2015. Vol. 10(11): e0140569. doi:10.1371/journal.pone.0140569.




DOI: http://dx.doi.org/10.17076/eb622

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2018