ОСНОВНЫЕ ЭТАПЫ ФОРМИРОВАНИЯ КЛЕТОЧНОГО ОТВЕТА РАСТЕНИЙ НА ВЫСОКОТЕМПЕРАТУРНЫЙ СТРЕСС

Ирина Александровна Нилова, Людмила Владимировна Топчиева, Александр Федорович Титов, Irina Nilova, Lyudmila Topchieva, Alexandеr Titov

Аннотация


В статье обобщены литературные данные о формировании клеточного ответа у растений на высокотемпературные воздействия. Рассмотрены его основные этапы: восприятие высокотемпературного воздействия, передача сигнала о высокотемпературном воздействии, синтез белков теплового шока (БТШ). Описаны некоторые структуры и компоненты клеток, которые являются наиболее вероятными участниками восприятия клетками растений теплового воздействия. Особое внимание уделено плазмалемме, кальциевым каналам и ионам кальция, а также возможному участию в этом процессе цитоскелета, фитохрома B, БТШ70 и БТШ90. Рассмотрено предположение об участии вторичных стрессов, в частности стресса эндоплазматического ретикулума (ЭР-стресс), в качестве начальных звеньев в общей цепи событий, связанных с восприятием и передачей сигнала о высокотемпературном воздействии. Показано, что ионы кальция и активные формы кислорода (АФК) могут являться компонентами системы передачи сигнала о высокотемпературном воздействии. Помимо этого в сигналинге теплового воздействия могут принимать участие кальций-связывающие белки, липидные сигнальные молекулы, фитогормоны и различные транскрипционные факторы (HSF, MBF1, DREB, C2H2 ZF и др.). Подчеркнута особая роль в ответной реакции растений на действие высокой температуры шоковых белков и рассмотрено участие в этих процессах основных групп БТШ: БТШ100, БТШ90, БТШ70, БТШ60, нмБТШ. Сделано заключение, что восприятие высокотемпературного воздействия, передача сигнала о нем в ядро и синтез шоковых белков, являющиеся ключевыми событиями в процессе формирования клеточного ответа у растений на высокотемпературные воздействия, приводят к повышению выживаемости растений в условиях действия высокой температуры.


Ключевые слова


растения; высокотемпературный стресс; восприятие и передача стрессового сигнала; синтез стрессовых белков; БТШ

Полный текст:

PDF

Литература


Карпец Ю. В. О возможных механизмах индуцирования теплоустойчивости проростков пшеницы мягкой и сосны обыкновенной кратковременным действием высокой температуры // Вiсник Харкiвського нацiонального аграрного унiверситету. Серiя бiологiя. 2007. Вип. 3, № 12. С. 63–70.

Карпец Ю. В., Колупаев Ю. Е., Ястреб Т. О., Дмитриев А. П. Возможное взаимодействие сигнальных систем при индуцировании устойчивости растительных клеток к тепловому стрессу // Reports of National Academy of Sciences of Ukraine. 2012. № 9. С. 136–141.

Козеко Л. Е. Белки теплового шока 90 КДа: разнообразие, структура и функции // Цитология. 2010. Т. 52, № 11. С. 893–910.

Колупаев Ю. Е., Карпец Ю. В. Активные формы кислорода при адаптации растений к стрессовым температурам // Физиология и биохимия культ. растений. 2009. Т. 41, № 2. C. 95–104.

Колупаев Ю. Е., Карпец Ю. В. Формирование адаптивных реакций на действие абиотических стрессоров. Киев: Основа, 2010. 352 с.

Колупаев Ю. Е., Обозный А. И., Швиденко Н. В. Роль пероксида водорода в формировании сигнала, индуцирующего развитие теплоустойчивости проростков пшеницы // Физиология растений. 2013. Т. 60, № 2. С. 221–229. doi: 10.7868/S0015330313020127

Косаковская И. В. Стрессовые белки растений / Ред. И. В. Косаковская. Киев: Фитосоциоцентр, 2008. 152 с.

Лутова Л. А., Ежова Т. А., Додуева И. Е., Осипова М. А. Генетика развития растений: для биологических специальностей университетов. СПб.: Издательство Н-Л, 2010. 432 с.

Марченков С. Ю., Марченко Н. Ю., Марченкова С. Ю., Семисотнов Г. В. Молекулярные шапероны прокариотических и эукариотических клеток // Успехи биологической химии. 2006. Т. 46. С. 279–302.

Медведев С. С. Кальциевая сигнальная система растений // Физиология растений. 2005. Т. 52, № 1. С. 1–24.

Мельников Э. Э., Ротанова Т. В. Молекулярные шапероны // Биоорганическая химия. 2010. Т. 36, № 1. С. 5–14.

Меркулов В. М., Меркулова Т. И. Регуляторные транскрипционные факторы могут контролировать процесс транскрипции на стадии элонгации пре-мРНК // Вавиловский журнал генетики и селекции. 2014. Т. 18, № 2. С. 329–337.

Нилова И. А., Топчиева Л. В., Титов А. Ф. Экспрессия генов БТШ у пшеницы при действии высоких температур // Труды Карельского научного центра РАН. 2015. № 12. С. 55–65. doi: 10.17076/eb240

Пономарева А. А., Рахматуллина Д. Ф., Газизова Н. И., Минибаева Ф. В. Динамические преобразования митохондрий при действии митохондриальных ядов // Физиология растений – теоретическая основа инновационных агро- и фитобиотехнологий: материалы: в 2‑х ч. Международная научная конференция и школа молодых ученых (Калининград, 19–25 мая). Иркутск, 2014. C. 360–362.

Потехина Е. С., Надеждина Е. С. Митоген-активируемые протеинкиназные каскады и участие в них Ste20‑подобных протеинкиназ // Успехи биологической химии. 2002. Т. 42. С. 235–256.

Рихванов Е. Г., Федосеева И. В., Пятрикас Д. В., Боровский Г. Б., Войников В. К. Механизм функционирования кальциевой сигнальной системы у растений при действии теплового стресса. Роль митохондрий в этом процессе // Физиология растений. 2014. Т. 61, № 2. C. 155–169. doi: 10.7868/S0015330314020134

Тарчевский И. А. Сигнальные системы клеток растений / Ред. А. Н. Гречкин. М.: Наука, 2002. 294 с.

Хохлова Л. П., Невмержицкая Ю. Ю. Роль цитоскелета в сигнальных системах растений // Ученые записки Казанского университета. Естественные науки. 2011. Т. 153. С. 147–179.

Шишова М. Ф., Танкелюн О. В., Емельянов В. В., Полевой В. В. Рецепция и трансдукция сигналов у растений. СПб.: С.‑Петерб. ун-т, 2008. 263 с.

Agarwal M., Katiyar-Agarwal S., Grover A. Plant Hsp100 proteins: structure, function and regulation // Plant Science. 2002. Vol. 163. P. 397–405. doi:10.1016/S0168-9452(02)00209-1

Agarwal P. K., Agarwal P., Reddy M. K., Sopory S. K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants // Plant Cell Rep. 2006. Vol. 25. P. 1263–1274. doi: 10.1007/s00299‑006‑0204‑8

Almeida T., Pinto G., Correia B., Santos C., Goncalves S. OsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber // Plant Physiology and Biochemistry. 2013. P. 274–281. doi: 10.1016/j. plaphy. 2013.10.007

Al-Whaibi M. H. Plant heat-shock proteins: A mini review

// Journal of King Saud University – Science. 2011. Vol. 23. P. 139–150. doi: 10.1016/j. jksus. 2010.06.002

Ambawat S., Sharma P., Yadav N. R., Yadav R. C. MYB transcription factor gene as regulators for plant responses:

an overview // Physiol. Mol. Biol. Plants. 2013. P. 307–321. doi: 10.1007/s12298‑013‑0179‑1

Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signaling transduction // Annual review of Plant Biology. 2004. Vol. 55. P. 373–399. doi: 10.1146/annurev.arplant.55.031903.141701

Arnholdt-Schmitt B. Stress-induced cell reprogramming: A role for global genome regulation? // Plant Physiol. 2004. Vol. 136. P. 2579–2586. doi: 10.1104/pp.104.042531

Bahuguna R. N., Jagadish K. S. V. Temperature regulation of plant phenological development // Environmental and Experimental Botany. 2015. Vol. III. P. 83–90. doi: 10.1016/j.envexpbot.2014.10.007

Bakshi M., Oelmuller R. WRKY transcription factors. Jack of many trades in plants // Plant Signaling and Behavior.

9: e27700. doi: 10.4161/psb.27700

Baniwal S. K., Bharti K., Chan K. Y., Fautn M., Ganguli A., Kotak S., Mishra S. K., Nover L., Port M., Scharf K.‑D., Tripp J., Weber Ch., Zielinski D., Koskull-Doring P. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors // J. Biosci. 2004. Vol. 29, no. 4. P. 471–487.

Bhattacharjee S. The language of reactive oxygen species signaling in plants // Journal of Botany. 2012. Article ID 985298, 22 p. doi: 10.1155/2012/985298

Bokszczanin K. L., Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) Consortium, Fragkostefanakis S. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance // Frontiers in Plant Science. Plant Physiology. 2013. Vol. 4. doi: 10.3389/fpls. 2013.00315

Boorstein W. R., Ziegelhoffer Th., Craig E. A. Molecular evolution of the HSP70 multigene family // J. Mol. Evol. 1994. Vol. 38. P. 1–17.

Boyko A., Blevins T., Yao Y., Golubov A., IInytskyy Y., Hollander J., Meins F., Kovalchuk I. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins // PLoS ONE. 2010. Vol. 5: e9514. doi: 10.1371/journal.pone.0009514

Cha J.‑Y., Kim J.‑Y., Kang S. B., Kim M. R., Su’udi M., Kim W.‑Y., Son D. Structural and functional differences of cytosolic 90‑kDa heat-shock proteins (Hsp90s) in Arabidopsis thaliana // Plant Physiology and Biochemistry. 2013. Vol. 70. P. 368–373. doi: 10.1016/j.plaphy.2013.05.039

Chen H., Hwang J. E., Lim Ch. J., Kim D. Y., Lee S. Y., Lim Ch. O. Arabidopsis DREB2C functionsas a transcriptional activator of HsfA3 during the heat stress response // Biochemical and Biophysical Communications. 2010. Vol. 401. P. 238–244. doi: 10.1016/ j.bbrc.2010.09.038

Cheng Q., Zhou Y., Liu Z., Zhang L., Song G., Gou Z., Wang W., Qu X., Zhu Y., Yang D. An alternatively spliced heat shock transcription factor, OsHSF2dI, function in the heat stress-induced unfolded protein response in rice // Plant Biology. 2015. Vol. 17. P. 419–429. doi: 10.1111/plb.12267

Chou T.‑Sh., Chao Y.‑Y., Kao Ch. H. Involment of hydrogen peroxide in heat shock- and cadmiuminduced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedling // Journal of Plant Physiology. 2012. Vol. 169. P. 478–486. doi: 10.1016/j.jplph.2011.11.012

Ciftci-Yilmaz S., Morsy M., Song L., Coutu A., Krizek B. A., Lewis M. W., Warren D., Cushman J., Connolly E. L., Mittler R. The EAR-motif of the Cys2/His2‑type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress // The Journal of Biological Chemistry. 2007. Vol. 282, no. 12. P. 9260–9268. doi: 10.1074/jbc.M611093200

Correia B., Valledor L., Meijon M., Rodriguez J. L., Dias C., Canal M. J., Rodriguez R., Pinto G. Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? // PLoS ONE. 2013. Vol. 8: e53543. doi: 10.1371/journal.pone.0053543

Cybulski L. E., de Mendoza D. Playing with transmembrane signals // Commun. Integr. Biol. 2011. Vol. 4. P. 69–71. doi: 10.4161/cib.4.1.13778

Davidson J. F., Schiestl R. H. Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae // Molecular and Cellular Biology. 2001. Vol. 21, no. 24. P. 8483–8489. doi: 10.1128/MCB.21.24.8483-8489.2001

Davletova S., Schlauch K., Coutu J., Mittler R. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis // Plant Physiology. 2005. Vol. 139. P. 847–856. doi: 10.1104/pp.105.068254

De Bigault Du Granrut A., Cacas J. L. How very long-chain fatty acids could signal stressful conditions in plants? // Front. Plant Sci. 2016. Vol. 7: 1490. doi: 10.3389/fpls.2016.01490

Demidchik V., Straltsova D., Medvedev S. S., Pozhvanov G. A., Sokolik A., Yurin V. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment // Journal of Experimental Botany. 2014. Vol. 65, no. 5. P. 1259–1270. doi: 10.1093/jxb/eru004

Deng Y., Srivastava R., Howell S. H. Endoplasmic reticulum (ER) stress response and its physiological roles in plants // Int. J. Mol. Sci. 2013. Vol. 14. P. 8188–8212. doi: 10.3390/ijms14048188

Deocaris C. C., Kaul S. C., Wadhwa R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60 // Cell stress and Chaperons. 2006. Vol. 11, no. 2. P. 116–128. doi: 10.1379/CSC-144R.1

Digel I. Primary thermosensory events in cells // Adv. Exp. Med. Biol. 2011. Vol. 704. P. 451–468. doi: 10.1007/978‑94‑007‑0265‑3_25

Dressler L., Golbik R., Ulbrich-Hofmann R. Lanthanides as substitutes for calcium ions in the activation of plant alpha-type phospholipase D // Biol. Chem. 2014. Vol. 395. P. 791–799. doi: 10.1515/hsz-2014-0112

El-kereamy A., Bi Y.‑M., Ranathunge K., Beatty P. H., Good A. G., Rothstein S. J. The rice R2R3‑MYB Transcription factor OsMYBB55 is involved in the tolerance to high temperature and modulates amino acid metabolism // PLoS ONE. 2012. 7 (12): e52030. doi: 10.1371/journal.pone.0052030.

Falcone D. L., Ogas J. P., Somerville Ch. R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition // BMC Plant Biology. 2004. 4:17. doi: 10.1186/1471‑2229‑4‑17

Finka A., Cuendet A. F. H., Maathuis F. J. M., Saidi Y., Gloubinoff P. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance // The Plant Cell. 2012. Vol. 24. P. 3333–3348. doi: 10.1105/tpc.112.095844

Gao F., Han X., Wu J., Zheng S., Sun D., Zhou R., Li B. A heat-activated calcium-permeable channel – Arabidopsis cyclic nucleotide-gated ion channel 6 – involved in heat shock responses // The Plant Journal. 2012. P. 1056–1069. doi: 10.1111/j.1365-313X.2012.04969.x

Gao G., Li J., Li H., Li F., Xu K., Yan G., Chen B., Qiao J., Wu X. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat sensitive rapeseed seedlings // Breed. Sci. 2014. Vol. 64. P. 125–133. doi: 10.1270/jsbbs.64.125

Gill S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants // Plant Physiology and Biochemistry. 2010. Vol. 48. P. 909–930. doi: 10.1016/j.plaphy.2010.08.016

Goes F. S., Martin J. Hsp chaperone complex are required for the activity and stability of yeast protein kinases MiK1, Wee1 and Swe1 // Eur. J. Biochem. 2001. Vol. 268, no. 8. P. 2281–2289. doi: 10.1046/j.1432-1327.2001.02105.x

Grover A., Mittal Dh., Negi M., Lavania D. Generating high temperature tolerant transgenic plants: Achievements and challenges // Plant Science. 2013. Vol. 205–206. P. 38–47. doi: 10.1016/j. plantsci.2013.01.005

Guo M., Zhai Y.‑F., Lu J.‑P., Chai L., Chai W.‑G., Gong Zh.‑H., Lu M.‑H. Characterization of CaHsp70–1, a Pepper heat-shock protein gene in response to heat stress and some regulation exogenous substances in Capsicum annuum L. // Int. J. Mol. Sci. 2014. Vol. 15. P. 19741–19759. doi: 10/3390/ijms151119741

Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life // Plant Physiology. 2006. Vol. 141. P. 312–322. doi: 10.1104/pp.106.077073

Hasanuzzaman M., Nahar K., Alam Md. M., Roychowdhury R., Fujita M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants // Int. J. Mol. Sci. 2013. Vol. 4, no. 5. P. 9643–9684. doi: 10.3390/ijms14059643

Hong S. W., Vierling E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97. P. 4392–4397. doi: 10.1073/pnas.97.8.4392

Hong Y., Zhao J., Guo L., Kim S. C., Deng X., Wang G., Zhang G., Li M., Wang X. Plant phospholipase D and C and their diverse functions in stress response // Progr. Lipid Res. 2016. Vol. 62. P. 55–74. doi: 10.1016/j. plipres.2016.01.002

Horvath I., Glatz A., Nakamoto H., Mishkind M. L., Munnik T., Saidi Y., Gloubinoff P., Harwood J. L., Vigh L. Heat shock response in photosynthetic oranisms: Membrane and lipid connections // Progress in lipid research. 2012. Vol. 51. P. 208–220. doi: 10.1016/j.plipres.2012.02.002

Horvath I., Glatz A., Varvasovszki V., Torok Z., Pali T., Balogh G., Kovacs E., Nadasdi L., Benko S., Joό F., Vigh L. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: Identification of hsp17 as a ≪fluidity gene≫ // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. P. 3513–3518.

Hossain Md. A., Henriguez-Valencia С., Gomez-Paez M., Medina J., Orellana Ar., Vicente-Carbajosa J., Zouhar J. Identification of novel components of the unfolded protein response in Arabidopsis // Front Plant Sci. 2016. Vol. 7. doi: 10.3389/fpls.2016.00650

Hou Q., Ufer G., Bartels D. Lipid signaling in plant responses to abiotic stress // Plant Cell Environ. 2016. Vol. 39. P. 1029–1048. doi: 10.1111/pce.12666

Iwata Y., Koizumi N. Plant transducer of the endoplasmic reticulum unfolded protein response // Trends in Plant Science. 2012. Vol. 17, no. 12. P. 720–727. doi: 10.1016/j.tplants.2012.06.014

Jin G.‑H., Gho H.‑J., Jung K.‑H. A systematic view of rice heat shock transcription factor family using phylogenomic analysis // Journal of Plant Physiology. 2013. Vol. 170. P. 321–329. doi: 10.1016/j.jplph.2012.09.008

Kadota Y., Shirasu K. The HSP90 complex of plants // Biochimica et Biophysica Acta. 2012. P. 689–697. doi:

1016/j.bbamer.2011.09.016

Kee S. C., Nobel P. S. Concomitant changes in high temperature tolerance and heat-shock proteins in desert

succulents // Ibid. 1986. Vol. 80. P. 596–598.

Kim G.‑D., Cho Y.‑H., Yoo S.‑D. Regulatory functions of evolutionarily conserved AN1/A20‑like zinc finger family proteins in Arabidopsis stress responses under high temperature // Biochemical and Biophysical Research Communications. 2015. Vol. 257, no. 2. P. 213–220. doi: 10.1016/j.bbrc.2014.12.090

Kim S.‑R., An G. Rice chloroplast-localized heat shock protein 70, OsHsp, is essential for chloroplast development under high-temperature conditions // Journal of Plant Physiology. 2013. Vol. 70, no. 9. P. 854–863. doi: 10.16/j. jplph.2013.01.006

Kirschner M., Winkelhaus S., Thierfelder J. M., Nover L. Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts // Plant J. 2000. Vol. 24. P. 397–411. doi: 10.1046/j.1365-313x.2000.00887.x

Kolupaev Yu. E., Akinina G. E., Mokrousov A. V. Induction of heat tolerance in wheat coleoptiles by calcium ions and its relation to oxidative stress // Russian Journal of Plant Physiology. 2005. Vol. 52, no. 2. P. 199–204. doi:

1007/s11183‑005‑0030‑9

Konigshofer H., Tromballa H.‑W., Loppert H.‑G. Early events in signalling high-temperature stress in tobacco BY2 cells involve alteration in membrane fluidity and enhanced hydrogen peroxide production // Plant, Cell and Environment. 2008. Vol. 31. P. 1771–1780. doi: 10.1111/j.1365-3040.20002.01880.x

Korner C. J., Du X., Vollmer M. E., Pajerowska-Mukhtar K. M. Endoplasmic reticulum stress signaling in plant immunity – at the crossroad of life and death // Int. J. Mol. Sci. 2015. Vol. 16. P. 26582–26598. doi: 10.3390/ijms161125964

Kotak S., Larkindale J., Lee U., Koskull-Doring P., Vierling E., Scharf K.‑D. Complexity of the heat stress response in plants // Current Opinion in Plant Biology. 2007. Vol. 10. P. 310–316. doi: 10.1016/j.pbi.2007.04.011

Kumar S. V., Wigge P. A. H2A.Z-Containing nucleosomes mediate the thermosensory response in Arabidopsis

// Cell. 2010. Vol. 140. P. 136–147. doi: 10.1016/j. cell. 2009.11.006

Lamotte O., Guold K., Lecourieux D., Sequeira-Legrand A., Garcia-Lebrun A., Durner J., Pugin A., Wendehenne D. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein // Plant Physiol. 2004. Vol. 135. P. 516–529. doi: 10.1104/pp.104.038968

Larkindale J., Knight M. R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicyc acid // Plant Physiology. 2002. Vol. 128. P. 682–695. doi: 10.1104/pp.010320

Lata Ch., Prasad M. Role of DREBs in regulation of abiotic stress responses in plants // Journal of Experimental Botany. 2011. Vol. 62, no. 14. P. 4731–4748. doi: 10.1093/jxb/err210

Legris M., Klose C., Burgie E. S., Costigliolo C., Neme M., Hiltbrunner A., Wigge Ph. A., Schafer E., Vierstra R. D., Casal J. Phytochrome B integrates light and temperature signals in Arabidopsis // Science. 2016. ISSUE 6314. P. 897–900. doi: 10.1126/science.aaf5656

Lin C.‑Y., Chen Y.‑M., Key J. L. Acquisition of thermotolerance in soybean seedlings // Plant Physiol. 1984. Vol. 74. P. 152–160.

Lin F., Qu Y., Zhang Q. Molecules regulating cytoskeletal organization in plant abiotic stress tolerance // Plant Signaling and Behavior. 2014. Vol. 9. doi: 10.4161/psb.28337

Lindemose S., O’Shea Ch., Jensen M. K., Skriver K. Structure, function and networks of transcription factors involved in abiotic stress responses // Int. J. Mol. Sci. 2013. Vol. 14. P. 5842–5878. doi: 10.3390/ijms14035842

Link V., Sinha K., Vashista P., Hofmann M. G., Proels R. K., Ehness R., Roitsch T. A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response // FEBS Letters. 2002. Vol. 531. P. 179–183. doi: 10.1016/S0014-5793(02)03498-1

Liu H., Charng Y. Common an distinct function of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development // Plant Physiology. 2013. Vol. 163. P. 276–290. doi: 10.1104.pp.113.221168

Liu H.‑T., Li B., Shang Zh.‑L., Li X.‑Zh., Mu R.‑L., Sun D.‑Y., Zhou R.‑G. Calmodulin is involved in heat shock signal transduction in Wheat // Plant Physiol. 2003. Vol. 132. P. 1186–1195. doi: 10.1104/pp.102.018564

Liu H.‑T., Sun D.‑Y., Zhou R.‑G. Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in

Arabidopsis // Plant, Cell and Environment. 2005. Vol. 28. P. 1276–1284. doi: 10.1111/j.1365-3040.2005.01365.x

Liu Hh.‑Ch., Liao H-T., Charng Y.‑Y. The role of class A1 heat shock factors (HSF1s) in response to heat and other stresses in Arabidopsis // Plant, Cell and Environment. 2011. Vol. 34, no. 5. P. 738–751. doi: 10.1111/j.1365-3040.2011.02278.x

Liu J., Feng L., Li J., He Z. Genetic and epigenetic control of plant heat responses // Front. Plant Sci. 2015. Vol. 6. Article 267. doi: 10.3389/fpls.2015.00267

Liu J.‑X., Srivastava R., Che P., Howell S. H. Salt stress responses in Arabidopsis utilize a signal transduction

pathway related to endoplasmic reticulum stress signaling // The Plant Journal. 2007a. Vol. 51. P. 897–909. doi: 10.1111/j.1365-313X.2007.03195.x

Liu J.‑X., Srivastava R., Che P., Howell S. H. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28 // Plant Cell. 2007b. Vol. 19, no. 12. P. 4111–4119. doi: 10.1105/tpc.106.050021

Liu L., Zhu K., Yang Y., Wu J., Chen F., Yu D. Molecular cloning, expression profiling and trans-activation property studies of a DREB2‑like gene from chrysanthemum (Dendranthema vestitum) // Journal of Plant research. 2008. Vol. 121, no. 2. P. 215–226. doi: 10.1007/s265‑007‑0140‑x

Los D. A., Murata N. Membrane fluidity and roles in the perception of environmental signaling // Biochimica et Biophysica Acta. 2004. Vol. 1666. P. 142–157. doi: 10.1016/j.bbamem.2004.08.002

Los D. A., Mironov K. S., Allakhverdiev S. I. Regulatory role of membrane fluidity in gene expression and physiological functions // Photosynthesis Research. 2013. Vol. 116. P. 489–509. doi: 10.1007/s11120‑013‑9823‑4

Lu P. Y., Levesque N., Kobor M. S. NuA4 and SWR1‑C: Two chromatin-modifying complexes with overlapping functions and components // Biochem. Cell Biol. 2009. Vol. 87. P. 799–815. doi: 10.1139/O09-062

Malerba M., Crosti P., Cerana R. Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+// Protoplasma. 2010. P. 23–30. doi: 10.1007/s00709‑009‑0078‑z

Martin R., Cutter K. G., Baldwin J. C., Dombrowski J. E. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea // BMC research Notes. 2012. 5:66. doi: 10.1186/1756‑0500‑5‑66

Matsukura S., Mizoi J., Yoshida T., Todaka D., Ito Y., Maruyama K., Shinozaki K., Yamaguchi-Shinozaki K. Comprehensive analysis of rice DREB2‑type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes // Molecular Genetics and Genomics. 2010. Vol. 283. P. 185–196. doi: 10.1007/s00438‑009‑0506‑y

McClung C. R., Davis S. J. Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing // Curr. Biol. 2010. 20: R1086–R1092. doi: 10.1016/j.cub.2010.10.035

Miller G., Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? // Annals of Botany. 2006. Vol. 98. P. 279–288. doi: 10.1093/aob/mc1107

Mishkind M., Vermeer J. E. M., Darwish E., Munnik T. Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus // The Plant Journal. 2009. Vol. 60. P. 10–21. doi: 10.1111/j.1365-313X.2009.03933.x

Mittler R., Finka An., Goloubinoff P. How do plants feel the heat? // Trends in Biochemical Science. 2012. Vol. 37, no. 3. P. 118–125. doi: 10.1016/j.tibs.2011.11.007

Mittler R., Kim Y., Song L., Coutu J., Coutu A., Ciftci-Yilmaz S., Lee H., Stevenson B., Zhu J.‑K. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress // FEBS Lett. 2006. Vol. 580. P. 6537–6542. doi: 10.1016/j.febslet.2006.11.002

Mittler R., Zilinskas B. A. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase // Journal of Biological Chemistry. 1992. Vol. 267. P. 21802–21807.

Montero-Barrientos M., Hermosa R., Cardoza R. E., Gutierrez S. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses // Journal of Plant Physiology. 2010. Vol. 167. P. 659–665. doi: 10.1016/j.jplph.2009.11.012

Mori I. C., Schroeder J. I. Reaction oxygene species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction // Plant Physiology. 2004. Vol. 135. P. 702–708. doi: 10.1104/pp.104.042069

Mu Ch., Zhang Sh., Yu G., Ni Ch., Li X., Liu H. Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses // PLoS ONE. 2013. Vol. 8 (12): e82264. doi: 10.1371/

journal.pone.0082264

Nakashima K., Ito Y., Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and Grasses // Plant Physiology. 2009. Vol. 149. P. 88–95. doi: 10.1104/pp.108.129791

Narberhaus F., Torsten Waldminghaus T., Chowdhury S. RNA thermometers // FEMS Microbiol. Rev. 2006. Vol. 30. P. 3–16. doi: 10.1111/j.1574-6976.2005.004.x

Nishizawa-Yokoi A., Nosaka R., Hayashi H., Tainaka H., Maruta T., Tamoi M., Ikeda M., Ohme-Takagi M., Yoshimura K., Yabuta Y., Shigeoka Sh. HsfA1d and Hsf1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress // Plant and Cell Physiology. 2011. Vol. 52, no. 5. P. 933–945. doi: 10.1093/pcp/pcr045

Popova O. V., Dinh H. Q., Aufsatz W., Jonak C. The RdDM pathway is required for basal heat tolerance in Arabidopsis // Molecular Plant. 2013. Vol. 6. P. 396–410. doi: 10.1093/mp/sst023

Pottosin I. I., Schonknecht G. Vacuolar calcium channels // J. Exp. Bot. 2007. Vol. 58, no. 7. P. 1559–1569. doi: 10.1093/jxb/erm035

Qin F., Kakimoto M., Sakuma Y., Maruyama K., Osakabe Y., Tran L.‑S. P., Shinozaki K., Yamaguchi-Shinozaki K. Regulation and function analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. // The Plant Journal. 2007. Vol. 50. P. 54–69. doi: 10.1111/j.1365-313X.2007.03034.x

Qu A.‑L., Ding Y.‑F., Jiang Q., Zhu Ch. Molecular mechanisms of the plant heat stress response // Biochemical and Biophysical Research Communications. 2013. Vol. 432. P. 203–207. doi: 10.1016/j.bbrc.2013.01.104

Queitsch C., Hong S. W., Vierling E., Lindquist S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis // Plant Cell. 2000. Vol. 12. P. 479–492.

Ranty B., Albon D., Galaud J.‑Ph. Plant calmodulin and calmodulin-related proteins // Plant Signaling and Behavior. 2006. P. 96–104.

Reddy A. S. N., Ali G. S., Celesnik H., Day I. S. Coping with stresses: role of calcium – and calcium/calmodulin- regulated gene expression // The Plant Cell. 2011. Vol. 32. P. 2010–2032. doi: 10.1105/tpc.111.084988

Rikhvanov E. G., Gamburg K. Z., Varakina N. N., Rusaleva T. M., Fedoseeva I. V., Tauson E. L., Stupnikova I. V., Stepanov A. V., Borovskii G. B., Voinikov V. K. Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture // The Plant Journal. 2007. Vol. 52. P. 763–778. doi: 10.1111/j.1365-313X.2007.03275.x

Rizhsky L., Davletova S., Liang H., Mittler R. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis // The Journal of Biological Chemistry. 2004. Vol. 279, no. 12. P. 11736–11743. doi: 10.1074/jbc. M313350200

Rizhsky L., Liang H., Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco // Plant Physiol. 2002. Vol. 130. P. 1143–1151. doi: 10.1104/pp.006858

Ruelland E., Zachowski A. How plants sense temperature? // Environ. Exp. Bot. 2010. Vol. 69. P. 225–232. doi: 10.1016/j.envexpbot.2010.05.011

Saidi Y., Finka An., Muriset M., Bromberg Z., Weiss Y. G., Maathuis F. J. M., Goloubinoff P. The heat response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane // The Plant Cell. 2009. Vol. 21. P. 2829–2843. doi: 10.1105/tpc.108.065318

Sakuma Y., Maruyama K., Qin F., Osakabe Y., Shinozaki K., Yamaguchi-Shinizaki K. Dual function of an Arabidopsis transcription factor DREB2A in waterstress-responsive and heat-stress-responsive gene expression // PNAS. 2006. Vol. 103, no. 49. P. 18822–18827. doi: 10.1073/pnas.0605639103

Sangwan V., Orvar B. L., Beyerly J., Hirt H., Dhindsa R. S. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways // Plant J. 2002. Vol. 31. P. 629–638. doi: 10.1046/j.1365-313X.2002.01384.x

Scandalios J. G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses // Brazilian Journal of Medical and Biology Research. 2005. Vol. 38. P. 995–1014. doi: 10.1590/S0100-879X2005000700003

Scarpeci E. T., Zanor M. I., Valle E. M. Investigation the role of plant heat shock proteins during oxidative stress // Plant Signaling and Behavior. 2008. Vol. 3. P. 856–857. doi: 10.1007/s11103‑007‑9274‑4

Schramm F., Larkindale J., Kiehlmann E., Ganguli A., Englich G., Vierling E., Koskull-Doring P. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis // The Plant Journal. 2008. Vol. 53. P. 264–274. doi: 10.1111/j.1365-313X.2007.0334.x

Shah K., Singh M., Rai A. Ch. Effect of heat shock induced oxidative stress is suppressed in Bc‑ZAT12 expressing drought tolerant tomato // Phytochemistry. 2013. Vol. 95. P. 109–117. doi: 10.1016/j.phytochem.2013.07.026

Sharma P., Jha A. B., Dubey R. Sh., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful condition // Journal of Botany. 2012. Article ID 217037, 26 p. doi: 10.1155/2012/217037

Singh A., Bhatnagar N., Pandey A., Pandey G. K. Plant phospholipase C family: regulation and functional role in lipid signaling // Cell Calcium. 2015. Vol. 58. P. 139–146. doi: 10.1016/j.ceca.2015.04.003

Soppe W. J., Jacobsen S. E., Alonso-Blanko C., Jackson J. P., Kakutani T., Koornneef M., Peeters A. J. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene // Mol. Cell. 2000. Vol. 6. P. 791–802. doi: 10.1016/S1097-2765(05)00090-0

Storozhenko S., De Pauw P., Van Montagu M., Kushnir I. D. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter // Plant Physiology. 1998. Vol. 118. P. 1005–1014.

Sun J., Ren L., Cheng Y., Gao J., Dong B., Chen S., Chen F., Jiang J. Identification of differentially expressed gene in Chrysanthemum nankingense (Asteraceae) under heat stress by RNA Seq // Gene. 2014. Vol. 552. P. 59–66. doi: 10.1016/j.gene.2014.09.013

Suzuki N., Miller G., Morales J., Shulaev V., Torres M. A., Mittler R. Respiratory burst oxidases: the engines of ROS signaling // Current Opinion in Plant Biology. 2011a. Vol. 14. P. 691–699. doi: 10.1016/j.pbi.2011.07.014

Suzuki N., Rizhsky L., Ling H., Shuman J., Shulaev V., Mittler R. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein briging factor 1c1 [w] // Plant Physiol. 2005. Vol. 139. P. 1313–1322. doi: 10.1104/pp.105.070110

Suzuki N., Sejima H., Tam R., Schalauch K., Mittler R. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana // The Plant Journal. 2011b. Vol. 66. P. 844–851. doi: 10.1111/j.1365-313X.2011.04550.x

Todeschini A.‑L., Georges A., Veitia R. A. Transcription factors: specific DNA binding and specific gene regulation // Trends in Genetics. 2014. Vol. 30, no. 6. doi: 10.1016/j.tig.2014.04.002

Torok Z., Crul T., Maresca B., Schutz G. J., Viana F., Dindia L., Piotto S., Brameshuber M., Balogh G., Peter M., Porta A., Trapani A., Gombos I., Glatz A., Gungor B., Peksel B., Jr L. V., Csoboz B., Horvath I., Vijayan M. M., Hooper Ph. L., Harwood J. L., Vigh L. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications // Biochimica et Biophysica Acta. 2014. Vol. 1838. P. 1594–1618.

doi: 10.1016/j.bbamem.2013.12.015

Tuteja N., Sopory S. K. Chemical signaling under abiotic stress environment in plants // Plant Signaling and Behavior. 2008. P. 525–536.

Usman M. G., Rafii M. Y., Ismail M. R., Malek M. A., Latif M. Ab., Oladosu Yu. Heat shock proteins: functions and response against heat stress in plants // IJSTR. 2014. Vol. 3. P. 204–218.

Volkov R. A., Panchuk I. I., Schoffl F. Heat-stressdependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using realtime RT-PCR // Journal of Experimental Botany. 2003. Vol. 54, no. 391. P. 2343–2349. doi: 10.1093/jxb/erg244

Volkov R. A., Panchuk I. I., Mullineaux Ph. M., Schoffl F. Heat stress-induced H2O2 is require for effective expression of heat gene in Arabidopsis // Plant Molecular Biology. 2006. Vol. 61. P. 733–746. doi: 10.1007/s1103‑006‑0045‑4

von Koskull-Doring F., Scharf K.‑D., Nover L. The diversity of plants heat stress transcription factors // Trends Plant. Sci. 2007. Vol. 12, no. 10. P. 452–457. doi: 10.1016/j.tplants.2007.08.014

Wahid A., Gelani S., Ashraf M., Foolad M. R. Heat tolerance in plants: An overview // Environmental and Experimental Botany. 2007. Vol. 61. P. 199–223. doi: 10.1016/j.envexpbot.2007.05.011

Wan Sh., Jiang L. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants // Protoplasma. 2016. Vol. 253. P. 753–764. doi: 10.1007/s00709‑015‑0842‑1

Wang D., Luthe D. S. Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance // Plant Physiol. 2003. Vol. 133. P. 319–327. doi: 10.1104/pp.102.018309

Wang P., Zhao L., Hou H., Zhang H., Huang Y., Wang Y., Li H., Gao F., Yan Sh., Li L. Epigenetic changes are associated with programmed cell death induced by heat stress in seedling leaves of Zea mays // Plant Cell Physiol. 2015. Vol. 56, no. 5. P. 965–976. doi: 10.1093/pcp/pcv023

Wang R., Zhang Yi., Kiffer M., Yu H., Kepinski S., Estelle M. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1 // Nature communications. 2016. 7:10269. doi: 10.1038/ncomms.10269

Waters E. R., Lee G. J., Vierling E. Evolution, structure and function of the small heat shock proteins in plants // Journal of Experimental Botany. 1996. Vol. 47, no. 296. P. 325–338.

Williams B., Verchot J., Dickman M. When supply does not meet demand-ER stress and plant programmed cell death // Frontiers in Plant Science. Plant Cell Biology. 2014. Vol. 5. doi: 10.3389/fpls.00211

Wu H.‑Ch., Jinn T.‑L. Oscillation regulation of Ca2+/calmodulin and heat-stress related genes in response to heat stress in rice (Oryza sativa L.) // Plant Signaling and Behavior. 2012. Vol. 7, no. 9. P. 1056–1057. doi: 10.4161/psb.21124

Xu Y., Lindquist S. Heat-shock protein hsp90 governs the activity of pp60v-src kinase // Proc. Natl. Acad. Sci. USA. 1993. Vol. 90. P. 7074–7078.

Xue G.‑P., Sadat Sh., Drenth J., Mclntyre C. L. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes // Journal of Experimental Botany. 2014a. Vol. 65, no. 2. P. 539–557. doi: 10.1093/jxb/ert399

Xue G.‑P., Drenth J., Mclntyre C. L. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets // Journal of Experimental Botany. 2014b. Vol. 66. P. 1025–1039. doi: 10.1093/jxb/eru462

Yamada K., Fukao Y., Hayashi M., Fukazawa M., Suzuki I., Nishimura M. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana // The Journal of Biological Chemistry. 2007. Vol. 282, no. 52. P. 37794–37804. doi: 10.1074/jbc. M707168200

Yang Z. T., Lu S. J., Wang M. J., Bi D. L., Sun L., Zhou S. F., Song S. F., Liu J. X. A plasma membranetethered transcription factor, NAC062/ANAC062/NTL6, mediates the unfolded protein response in Arabidopsis // Plant J. 2014a. Vol. 79. P. 1033–1043. doi: 10.1111/tpj.12604

Yang Z. T., Wang M. J., Sun L., Lu S. J., Bi D. L., Sun L., Song Z. T., Zhang Sh. Sh., Zhou Sh. F., Liu J. X. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants // PLoS Genet. 2014b. Vol. 10. e1004243. doi: 10.1371/journal.pgen.1004243

Yeh Ch. H., Chang P. F. L., Yen K. W., Lin W. Ch., Chen Y. M., Lin Ch. Yu. Expression of a gene encoding a 16.9‑kDa heat-shock protein Oshsp16.9, in Escherichia coli enhance thermotolerance // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 10967–10972.

Zang D., Wang Ch., Ji X., Wang Y. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities // Plant Science. 2015. Vol. 235. P. 111–121. doi: 10.1016/j.plantsci.2015.02.016

Zhang J., Liu B., Li J., Zhang L., Wang Y., Zheng H., Lu M., Chen J. Hsf and Hsp gene families in Populus: genome wide identification, organization and correlated expression during development and in stress responses // BMC Genomics. 2015. 16:181. doi: 10.1186/s12864‑015‑1398‑3

Zhang Y., Mian M. A. R., Chekhovskiy K. et al. Differential gene expression in Festuca under heat stress conditions // J. Exp. Bot. 2005. Vol. 413. P. 897–907. doi: 10.1093/jxb/eri082

Zhu X., Liu Sh., Meng Ch., Qin L., Kong L., Xia G. WRKY transcription factors in wheat and their induction by biotic and abiotic stress // Plant Molecular Biology Reporter. 2013. Vol. 31. P. 1053–1067. doi: 10.1007/s11105‑013‑0565‑4

Zilberman D., Gehring M., Tran R. K., Ballinger T., Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription // Nature Genetics. 2007. Vol. 39. P. 61–69. doi: 10.1038/ng1929

References in English

Karpets Yu. V. O vozmozhnykh mekhanizmakh indutsirovaniya teploustoichivosti prorostkov pshenitsy myagkoi

i sosny obyknovennoi kratkovremennym deistviem vysokoi temperatury [On possible mechanisms of heat

tolerance induction in seedlings of the common wheat and the Scots pine by short-term high temperature

stress]. Visnik Kharkivs’kogo natsional’nogo agrarnogo universitetu. Seriya biologiya [Bull. of Kharkiv National

Agr. Univ. Biol. Ser.]. 2007. Iss. 3, no. 12. P. 63–70.

Karpets Yu. V., Kolupaev Yu. E., Yastreb T. O., Dmitriev A. P. Vozmozhnoe vzaimodeistvie signal’nykh

sistem pri indutsirovanii ustoichivosti rastitel’nykh kletok k teplovomu stressu [Possible interaction of signaling

systems during the induction of heat stress tolerance in plant cells]. Reports of National Academy of Sciences of

Ukraine. 2012. No. 9. P. 136–141.

Kozeko L. E. Belki teplovogo shoka 90 KDa: raznoobrazie, struktura i funktsii [90‑kDa heat-shock proteins:

diversity, structure, and functions]. Tsitologiya [Cell and Tissue Biology]. 2010. Vol. 52, no. 11. P. 893–910.

Kolupaev Yu. E., Karpets Yu. V. Aktivnye formy kisloroda pri adaptatsii rastenii k stressovym temperaturam

[Reactive oxygen species during plants adaptation ton thermal stress]. Fiziologiya i biokhimiya kul’t. rastenii

[Physiology and Biochemistry of Cult. Plants]. 2009. Vol. 41, no. 2. P. 95–104.

Kolupaev Yu. E., Karpets Yu. V. Formirovanie adaptivnykh reaktsii na deistvie abioticheskikh stressorov

[Formation of adaptive reactions to abiotic stress]. Kiev: Osnova, 2010. 352 p.

Kolupaev Yu. E., Oboznyi A. I., Shvidenko N. V. Rol’ peroksida vodoroda v formirovanii signala, indutsiruyushchego

razvitie teploustoichivosti prorostkov pshenitsy [Role of hydrogen peroxide in generation of a signal inducing heat tolerance of wheat seedlings]. Fiziologiya rastenii [Russ. Journal of Plant Physiology]. 2013. Vol. 60, no. 2. P. 221–229. doi: 10.7868/S0015330313020127

Kosakovskaya I. V. Stressovye belki rastenii [Plant stress proteins]. Ed. I. V. Kosakovskaya. Kiev: Fitosotsiotsentr,

152 p.

Lutova L. A., Ezhova T. A., Dodueva I. E., Osipova M. A. Genetika razvitiya rastenii: dlya biologicheskikh

spetsial’nostei universitetov [Genetics of plant development (for biology sciences university students)]. St. Petersburg: Izd-vo N-L, 2010. 432 p.

Marchenkov S. Yu., Marchenko N. Yu., Marchenkova S. Yu., Semisotnov G. V. Molekulyarnye shaperony

prokarioticheskikh i eukarioticheskikh kletok [Molecular chaperones of prokaryotic and eukaryotic

cells]. Uspekhi biologicheskoi khimii [Biochemistry. Special Iss. Biol. Chemistry Reviews]. 2006. Vol. 46.

P. 279–302.

Medvedev S. S. Kal’tsievaya signal’naya sistema rastenii [Calcium signaling system of plants]. Fiziologiya

rastenii [Russ. Journal of Plant Physiology]. 2005. Vol. 52, no. 1. P. 1–24.

Mel’nikov E. E., Rotanova T. V. Molekulyarnye shaperony [Molecular chaperones]. Bioorganicheskaya khimiya

[Russ. Journal of Bioorganic Chem.]. 2010. Vol. 36, no. 1. P. 5–14.

Merkulov V. M., Merkulova T. I. Regulyatornye transkriptsionnye faktory mogut kontrolirovat’ protsess transkriptsii

na stadii elongatsii pre-mRNK [Regulatory transcription factors may participate in post-initiation control

of transcription]. Vavilovskii zhurnal genetiki i selektsii [Vavilov Journal of Genetics and Breeding]. 2014.

Vol. 18, no. 2. P. 329–337.

Nilova I. A., Topchieva L. V., Titov A. F. Ekspressiya genov BTSh u pshenitsy pri deistvii vysokikh temperatur

[HSP gene expression in wheat under heat stress]. Trudy KarNTs RAN [Trans. of KarRS of RAS]. 2015. No. 12.

P. 55–65. doi: 10.17076/eb240

Ponomareva A. A., Rakhmatullina D. F., Gazizova N. I., Minibaeva F. V. Dinamicheskie preobrazovaniya

mitokhondrii pri deistvii mitokhondrial’nykh yadov [Dynamic changes of mitochondria under mitochondrial

poison influence]. Fiziologiya rastenii – teoreticheskaya osnova innovatsionnykh agro- i fitobiotekhnologii:

materialy: v 2‑kh ch. Mezhdunarodnaya nauchnaya konferentsii i shkola molodykh uchenykh (Kaliningrad,

–25 maya) [Plant Physiology as a Theoretical Basis for Innovative Agrarian and Phytobiological Technologies:

Proceed. of the Int. Scientific Conf. and School for Young Res. (in 2 Parts) (Kaliningrad, May 19–25)]. Irkutsk,

P. 360–362.

Potekhina E. S., Nadezhdina E. S. Mitogen-aktiviruemye proteinkinaznye kaskady i uchastie v nikh

Ste20‑podobnykh proteinkinaz [Mitogen-activated protein kinase cascades and the participation of Ste20‑like

protein kinase]. Uspekhi biologicheskoi khimii [Biochemistry. Special Iss. Biol. Chemistry Reviews]. 2002.

Vol. 42. P. 235–256.

Rikhvanov E. G, Fedoseeva I. V., Pyatrikas D. V., Borovskii G. B., Voinikov V. K. Mekhanizm funktsionirovaniya

kal’tsievoi signal’noi sistemy u rastenii pri deistvii teplovogo stressa. Rol’ mitokhondrii v etom protsesse

[Role of mitochondria in the operation of calcium signaling system in heat-stressed plants]. Fiziologiya Rastenii

[Russ. Journal of Plant Physiology]. 2014. Vol. 61, no. 2. P. 155–169. doi: 10.7868/S0015330314020134

Tarchevskii I. A. Signal’nye sistemy kletok rastenii [Signaling systems of plant cells]. Ed. A. N. Grechkin.

Moscow: Nauka, 2002. 294 p.

Khokhlova L. P., Nevmerzhitskaya Yu. Yu. Rol’ tsitoskeleta v signal’nykh sistemakh rastenii [Role of cytoskeleton

in plant signaling systems]. Uchenye zapiski Kazanskogo universiteta [Proceed. of Kazan Univ. Nat. Sciences Ser.]. 2011. Vol. 153. P. 147–179.

Shishova M. F., Tankelyun O. V., Emel’yanov V. V., Polevoi V. V. Retseptsiya i transduktsiya signalov u rastenii [Signal perception and transduction in plants]. St. Petersburg: S.‑Peterb. un-t, 2008. 263 p.

Agarwal P. K., Agarwal P., Reddy M. K., Sopory S. K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants // Plant Cell Rep. 2006. Vol. 25. P. 1263–1274. doi: 10.1007/s00299‑006‑0204‑8

Almeida T., Pinto G., Correia B., Santos C., Goncalves S. OsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber // Plant Physiology and Biochemistry. 2013. P. 274–281. doi: 10.1016/j. plaphy. 2013.10.007

Al-Whaibi M. H. Plant heat-shock proteins: A mini review

// Journal of King Saud University – Science. 2011. Vol. 23. P. 139–150. doi: 10.1016/j. jksus. 2010.06.002

Ambawat S., Sharma P., Yadav N. R., Yadav R. C. MYB transcription factor gene as regulators for plant responses:

an overview // Physiol. Mol. Biol. Plants. 2013. P. 307–321. doi: 10.1007/s12298‑013‑0179‑1

Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signaling transduction // Annual review of Plant Biology. 2004. Vol. 55. P. 373–399. doi: 10.1146/annurev.arplant.55.031903.141701

Arnholdt-Schmitt B. Stress-induced cell reprogramming: A role for global genome regulation? // Plant Physiol. 2004. Vol. 136. P. 2579–2586. doi: 10.1104/pp.104.042531

Bahuguna R. N., Jagadish K. S. V. Temperature regulation of plant phenological development // Environmental and Experimental Botany. 2015. Vol. III. P. 83–90. doi: 10.1016/j.envexpbot.2014.10.007

Bakshi M., Oelmuller R. WRKY transcription factors. Jack of many trades in plants // Plant Signaling and Behavior. 2014. 9: e27700. doi: 10.4161/psb.27700

Baniwal S. K., Bharti K., Chan K. Y., Fautn M., Ganguli A., Kotak S., Mishra S. K., Nover L., Port M., Scharf K.‑D., Tripp J., Weber Ch., Zielinski D., Koskull-Doring P. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors // J. Biosci. 2004. Vol. 29, no. 4.

P. 471–487.

Bhattacharjee S. The language of reactive oxygen species signaling in plants // Journal of Botany. 2012.

Article ID 985298, 22 p. doi: 10.1155/2012/985298

Bokszczanin K. L., Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) Consortium, Fragkostefanakis S. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance // Frontiers in Plant Science. Plant Physiology. 2013. Vol. 4. doi: 10.3389/fpls. 2013.00315

Boorstein W. R., Ziegelhoffer Th., Craig E. A. Molecular evolution of the HSP70 multigene family // J. Mol. Evol. 1994. Vol. 38. P. 1–17.

Boyko A., Blevins T., Yao Y., Golubov A., IInytskyy Y., Hollander J., Meins F., Kovalchuk I. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins // PLoS ONE. 2010. Vol. 5: e9514. doi: 10.1371/journal.pone.0009514

Cha J.‑Y., Kim J.‑Y., Kang S. B., Kim M. R., Su’udi M., Kim W.‑Y., Son D. Structural and functional differences of cytosolic 90‑kDa heat-shock proteins (Hsp90s) in Arabidopsis thaliana // Plant Physiology and Biochemistry. 2013. Vol. 70. P. 368–373. doi: 10.1016/j.plaphy.2013.05.039

Chen H., Hwang J. E., Lim Ch. J., Kim D. Y., Lee S. Y., Lim Ch. O. Arabidopsis DREB2C functionsas a transcriptional activator of HsfA3 during the heat stress response // Biochemical and Biophysical Communications. 2010. Vol. 401. P. 238–244. doi: 10.1016/ j.bbrc.2010.09.038

Cheng Q., Zhou Y., Liu Z., Zhang L., Song G., Gou Z., Wang W., Qu X., Zhu Y., Yang D. An alternatively spliced heat shock transcription factor, OsHSF2dI, function in the heat stress-induced unfolded protein response in rice // Plant Biology. 2015. Vol. 17. P. 419–429. doi: 10.1111/plb.12267

Chou T.‑Sh., Chao Y.‑Y., Kao Ch. H. Involment of hydrogen peroxide in heat shock- and cadmiuminduced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedling // Journal of Plant Physiology. 2012. Vol. 169. P. 478–486. doi: 10.1016/j.jplph.2011.11.012

Ciftci-Yilmaz S., Morsy M., Song L., Coutu A., Krizek B. A., Lewis M. W., Warren D., Cushman J., Connolly E. L., Mittler R. The EAR-motif of the Cys2/His2‑type zinc finger protein Zat7 plays a key role in the

defense response of Arabidopsis to salinity stress // The Journal of Biological Chemistry. 2007. Vol. 282, no. 12. P. 9260–9268. doi: 10.1074/jbc.M611093200

Correia B., Valledor L., Meijon M., Rodriguez J. L., Dias C., Canal M. J., Rodriguez R., Pinto G. Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? // PLoS ONE. 2013. Vol. 8: e53543. doi: 10.1371/journal.pone.0053543

Cybulski L. E., de Mendoza D. Playing with transmembrane signals // Commun. Integr. Biol. 2011. Vol. 4. P. 69–71. doi: 10.4161/cib.4.1.13778

Davidson J. F., Schiestl R. H. Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae // Molecular and Cellular Biology. 2001. Vol. 21, no. 24. P. 8483–8489. doi: 10.1128/MCB.21.24.8483-8489.2001

Davletova S., Schlauch K., Coutu J., Mittler R. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis // Plant Physiology. 2005. Vol. 139. P. 847–856. doi: 10.1104/pp.105.068254

De Bigault Du Granrut A., Cacas J. L. How very long-chain fatty acids could signal stressful conditions in plants? // Front. Plant Sci. 2016. Vol. 7: 1490. doi: 10.3389/fpls.2016.01490

Demidchik V., Straltsova D., Medvedev S. S., Pozhvanov G. A., Sokolik A., Yurin V. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment // Journal of Experimental Botany. 2014. Vol. 65, no. 5. P. 1259–1270. doi: 10.1093/jxb/eru004

Deng Y., Srivastava R., Howell S. H. Endoplasmic reticulum (ER) stress response and its physiological roles in plants // Int. J. Mol. Sci. 2013. Vol. 14. P. 8188–8212. doi: 10.3390/ijms14048188

Deocaris C. C., Kaul S. C., Wadhwa R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60 // Cell stress and Chaperons. 2006. Vol. 11, no. 2. P. 116–128. doi: 10.1379/CSC-144R.1

Digel I. Primary thermosensory events in cells // Adv. Exp. Med. Biol. 2011. Vol. 704. P. 451–468. doi: 10.1007/978‑94‑007‑0265‑3_25

Dressler L., Golbik R., Ulbrich-Hofmann R. Lanthanides as substitutes for calcium ions in the activation of plant alpha-type phospholipase D // Biol. Chem. 2014. Vol. 395. P. 791–799. doi: 10.1515/hsz-2014-0112

El-kereamy A., Bi Y.‑M., Ranathunge K., Beatty P. H., Good A. G., Rothstein S. J. The rice R2R3‑MYB Transcription factor OsMYBB55 is involved in the tolerance to high temperature and modulates amino acid metabolism // PLoS ONE. 2012. 7 (12): e52030. doi: 10.1371/journal.pone.0052030.

Falcone D. L., Ogas J. P., Somerville Ch. R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition // BMC Plant Biology. 2004. 4:17. doi: 10.1186/1471‑2229‑4‑17

Finka A., Cuendet A. F. H., Maathuis F. J. M., Saidi Y., Gloubinoff P. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance // The Plant Cell. 2012. Vol. 24. P. 3333–3348. doi: 10.1105/tpc.112.095844

Gao F., Han X., Wu J., Zheng S., Sun D., Zhou R., Li B. A heat-activated calcium-permeable channel – Arabidopsis cyclic nucleotide-gated ion channel 6 – involved in heat shock responses // The Plant Journal. 2012. P. 1056–1069. doi: 10.1111/j.1365-313X.2012.04969.x

Gao G., Li J., Li H., Li F., Xu K., Yan G., Chen B., Qiao J., Wu X. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat sensitive rapeseed seedlings // Breed. Sci. 2014. Vol. 64. P. 125–133. doi: 10.1270/jsbbs.64.125

Gill S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants // Plant Physiology and Biochemistry. 2010. Vol. 48. P. 909–930. doi: 10.1016/j.plaphy.2010.08.016

Goes F. S., Martin J. Hsp chaperone complex are required for the activity and stability of yeast protein kinases MiK1, Wee1 and Swe1 // Eur. J. Biochem. 2001. Vol. 268, no. 8. P. 2281–2289. doi: 10.1046/j.1432-1327.2001.02105.x

Grover A., Mittal Dh., Negi M., Lavania D. Generating high temperature tolerant transgenic plants: Achievements and challenges // Plant Science. 2013. Vol. 205–206. P. 38–47. doi: 10.1016/j.plantsci.2013.01.005

Guo M., Zhai Y.‑F., Lu J.‑P., Chai L., Chai W.‑G., Gong Zh.‑H., Lu M.‑H. Characterization of CaHsp70–1, a Pepper heat-shock protein gene in response to heat stress and some regulation exogenous substances in Capsicum annuum L. // Int. J. Mol. Sci. 2014. Vol. 15. P. 19741–19759. doi: 10/3390/ijms151119741

Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life // Plant Physiology. 2006. Vol. 141. P. 312–322. doi: 10.1104/pp.106.077073

Hasanuzzaman M., Nahar K., Alam Md. M., Roychowdhury R., Fujita M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants // Int. J. Mol. Sci. 2013. Vol. 4, no. 5. P. 9643–9684. doi: 10.3390/ijms14059643

Hong S. W., Vierling E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97. P. 4392–4397. doi: 10.1073/pnas.97.8.4392

Hong Y., Zhao J., Guo L., Kim S. C., Deng X., Wang G., Zhang G., Li M., Wang X. Plant phospholipase D and C and their diverse functions in stress response // Progr. Lipid Res. 2016. Vol. 62. P. 55–74. doi: 10.1016/j. plipres.2016.01.002

Horvath I., Glatz A., Nakamoto H., Mishkind M. L., Munnik T., Saidi Y., Gloubinoff P., Harwood J. L., Vigh L. Heat shock response in photosynthetic oranisms: Membrane and lipid connections // Progress in lipid research. 2012. Vol. 51. P. 208–220. doi: 10.1016/j.plipres.2012.02.002

Horvath I., Glatz A., Varvasovszki V., Torok Z., Pali T., Balogh G., Kovacs E., Nadasdi L., Benko S., Joό F., Vigh L. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis

PCC 6803: Identification of hsp17 as a ≪fluidity gene≫ // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. P. 3513–3518.

Hossain Md. A., Henriguez-Valencia С., Gomez-Paez M., Medina J., Orellana Ar., Vicente-Carbajosa J., Zouhar J. Identification of novel components of the unfolded protein response in Arabidopsis // Front Plant Sci. 2016. Vol. 7. doi: 10.3389/fpls.2016.00650

Hou Q., Ufer G., Bartels D. Lipid signaling in plant responses to abiotic stress // Plant Cell Environ. 2016. Vol. 39. P. 1029–1048. doi: 10.1111/pce.12666

Iwata Y., Koizumi N. Plant transducer of the endoplasmic reticulum unfolded protein response // Trends in Plant Science. 2012. Vol. 17, no. 12. P. 720–727. doi: 10.1016/j.tplants.2012.06.014

Jin G.‑H., Gho H.‑J., Jung K.‑H. A systematic view of rice heat shock transcription factor family using phylogenomic analysis // Journal of Plant Physiology. 2013. Vol. 170. P. 321–329. doi: 10.1016/j.jplph.2012.09.008

Kadota Y., Shirasu K. The HSP90 complex of plants // Biochimica et Biophysica Acta. 2012. P. 689–697. doi:

1016/j.bbamer.2011.09.016

Kee S. C., Nobel P. S. Concomitant changes in high temperature tolerance and heat-shock proteins in desert succulents // Ibid. 1986. Vol. 80. P. 596–598.

Kim G.‑D., Cho Y.‑H., Yoo S.‑D. Regulatory functions of evolutionarily conserved AN1/A20‑like zinc finger family proteins in Arabidopsis stress responses under high temperature // Biochemical and Biophysical Research Communications. 2015. Vol. 257, no. 2. P. 213–220. doi: 10.1016/j.bbrc.2014.12.090

Kim S.‑R., An G. Rice chloroplast-localized heat shock protein 70, OsHsp, is essential for chloroplast development under high-temperature conditions // Journal of Plant Physiology. 2013. Vol. 70, no. 9. P. 854–863. doi: 10.16/j. jplph.2013.01.006

Kirschner M., Winkelhaus S., Thierfelder J. M., Nover L. Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts // Plant J. 2000. Vol. 24. P. 397–411. doi: 10.1046/j.1365-313x.2000.00887.x

Kolupaev Yu. E., Akinina G. E., Mokrousov A. V. Induction of heat tolerance in wheat coleoptiles by calcium ions and its relation to oxidative stress // Russian Journal of Plant Physiology. 2005. Vol. 52, no. 2. P. 199–204. doi:

1007/s11183‑005‑0030‑9

Konigshofer H., Tromballa H.‑W., Loppert H.‑G. Early events in signalling high-temperature stress in tobacco BY2 cells involve alteration in membrane fluidity and enhanced hydrogen peroxide production // Plant, Cell and Environment. 2008. Vol. 31. P. 1771–1780. doi: 10.1111/j.1365-3040.20002.01880.x

Korner C. J., Du X., Vollmer M. E., Pajerowska-Mukhtar K. M. Endoplasmic reticulum stress signaling in plant immunity – at the crossroad of life and death // Int. J. Mol. Sci. 2015. Vol. 16. P. 26582–26598. doi:

3390/ijms161125964

Kotak S., Larkindale J., Lee U., Koskull-Doring P., Vierling E., Scharf K.‑D. Complexity of the heat stress response in plants // Current Opinion in Plant Biology. 2007. Vol. 10. P. 310–316. doi: 10.1016/j.pbi.2007.04.011

Kumar S. V., Wigge P. A. H2A.Z-Containing nucleosomes mediate the thermosensory response in Arabidopsis // Cell. 2010. Vol. 140. P. 136–147. doi: 10.1016/j. cell. 2009.11.006

Lamotte O., Guold K., Lecourieux D., Sequeira-Legrand A., Garcia-Lebrun A., Durner J., Pugin A., Wendehenne D. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein // Plant Physiol. 2004. Vol. 135. P. 516–529. doi: 10.1104/pp.104.038968

Larkindale J., Knight M. R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicyc acid // Plant Physiology. 2002. Vol. 128. P. 682–695. doi: 10.1104/pp.010320

Lata Ch., Prasad M. Role of DREBs in regulation of abiotic stress responses in plants // Journal of Experimental Botany. 2011. Vol. 62, no. 14. P. 4731–4748. doi: 10.1093/jxb/err210

Legris M., Klose C., Burgie E. S., Costigliolo C., Neme M., Hiltbrunner A., Wigge Ph. A., Schafer E., Vierstra R. D., Casal J. Phytochrome B integrates light and temperature signals in Arabidopsis // Science. 2016. ISSUE 6314. P. 897–900. doi: 10.1126/science.aaf5656

Lin C.‑Y., Chen Y.‑M., Key J. L. Acquisition of thermotolerance in soybean seedlings // Plant Physiol. 1984. Vol. 74. P. 152–160.

Lin F., Qu Y., Zhang Q. Molecules regulating cytoskeletal organization in plant abiotic stress tolerance // Plant Signaling and Behavior. 2014. Vol. 9. doi: 10.4161/psb.28337

Lindemose S., O’Shea Ch., Jensen M. K., Skriver K. Structure, function and networks of transcription factors involved in abiotic stress responses // Int. J. Mol. Sci. 2013. Vol. 14. P. 5842–5878. doi: 10.3390/ijms14035842

Link V., Sinha K., Vashista P., Hofmann M. G., Proels R. K., Ehness R., Roitsch T. A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response // FEBS Letters. 2002. Vol. 531. P. 179–183. doi: 10.1016/S0014-5793(02)03498-1

Liu H., Charng Y. Common an distinct function of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development // Plant Physiology. 2013. Vol. 163. P. 276–290. doi: 10.1104.pp.113.221168

Liu H.‑T., Li B., Shang Zh.‑L., Li X.‑Zh., Mu R.‑L., Sun D.‑Y., Zhou R.‑G. Calmodulin is involved in heat shock signal transduction in Wheat // Plant Physiol. 2003. Vol. 132. P. 1186–1195. doi: 10.1104/pp.102.018564

Liu H.‑T., Sun D.‑Y., Zhou R.‑G. Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in

Arabidopsis // Plant, Cell and Environment. 2005. Vol. 28. P. 1276–1284. doi: 10.1111/j.1365-3040.2005.01365.x

Liu Hh.‑Ch., Liao H-T., Charng Y.‑Y. The role of class A1 heat shock factors (HSF1s) in response to heat and other stresses in Arabidopsis // Plant, Cell and Environment. 2011. Vol. 34, no. 5. P. 738–751. doi: 10.1111/j.1365-3040.2011.02278.x

Liu J., Feng L., Li J., He Z. Genetic and epigenetic control of plant heat responses // Front. Plant Sci. 2015. Vol. 6. Article 267. doi: 10.3389/fpls.2015.00267

Liu J.‑X., Srivastava R., Che P., Howell S. H. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling // The Plant Journal. 2007a. Vol. 51. P. 897–909. doi: 10.1111/j.1365-313X.2007.03195.x

Liu J.‑X., Srivastava R., Che P., Howell S. H. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28 // Plant Cell. 2007b. Vol. 19, no. 12. P. 4111–4119. doi: 10.1105/tpc.106.050021

Liu L., Zhu K., Yang Y., Wu J., Chen F., Yu D. Molecular cloning, expression profiling and trans-activation property studies of a DREB2‑like gene from chrysanthemum (Dendranthema vestitum) // Journal of Plant research. 2008. Vol. 121, no. 2. P. 215–226. doi: 10.1007/s265‑007‑0140‑x

Los D. A., Murata N. Membrane fluidity and roles in the perception of environmental signaling // Biochimica et Biophysica Acta. 2004. Vol. 1666. P. 142–157. doi: 10.1016/j.bbamem.2004.08.002

Los D. A., Mironov K. S., Allakhverdiev S. I. Regulatory role of membrane fluidity in gene expression and physiological functions // Photosynthesis Research. 2013. Vol. 116. P. 489–509. doi: 10.1007/s11120‑013‑9823‑4

Lu P. Y., Levesque N., Kobor M. S. NuA4 and SWR1‑C: Two chromatin-modifying complexes with overlapping functions and components // Biochem. Cell Biol. 2009. Vol. 87. P. 799–815. doi: 10.1139/O09-062

Malerba M., Crosti P., Cerana R. Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+// Protoplasma. 2010. P. 23–30. doi: 10.1007/s00709‑009‑0078‑z

Martin R., Cutter K. G., Baldwin J. C., Dombrowski J. E. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea // BMC research Notes. 2012. 5:66. doi: 10.1186/1756‑0500‑5‑66

Matsukura S., Mizoi J., Yoshida T., Todaka D., Ito Y., Ma




DOI: http://dx.doi.org/10.17076/eb572

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019