Всегда ли фотопериодический стресс вреден?
Аннотация
Представлен обзор работ, в которых экспериментально показано, что резкое увеличение продолжительности фотопериода или использование при выращивании растений в условиях искусственного климата аномальных свето-темновых циклов вызывает у них стресс, получивший в литературе название фотопериодического стресса. Аналогично другим видам стресса он вызывает целый спектр измене-ний и/или нарушений в жизнедеятельности растений, накопление которых может стать для них губительным. В частности, под влиянием фотопериодического стресса в растениях происходит усиление генерации активных форм кислорода (АФК), следствием чего является развитие окислительного стресса. Однако, если сила стрессирующего воздействия не слишком велика (мягкий или умеренный стресс), благодаря включению механизмов неспецифической устойчивости растения сохраняют жизнеспособность и благополучно переживают неблагоприятный период. Принципиально, что последствия такого стресса не обязательно являются исключительно негативными. Более того, манипулируя фотопериодическими условиями, можно выявить такие, которые, являясь в принципе аномальными для растений, тем не менее способны оказывать положительный эффект, например, в плане улучшения каких-то важных с хозяйственной точки зрения показателей, в частности, тех, которые определяют пищевую ценность и биобезопасность (за счет снижения содержания нитратов) растительной продукции. Следовательно, если для растений фотопериодический стресс, как правило, вреден, то для человека, как субъекта хозяйственной деятельности, он может оказаться полезным, выступая условием достижения намеченного хозяйственного результата. Последний может находить свое выражение как в получении большего урожая или урожая более высокого качества (по потребительским характеристикам), так и в снижении затрат на получение единицы продукции.
Ключевые слова
Полный текст:
PDFЛитература
Ерофеева E. A., Гелашвили Д. Б., Розенберг Г. С. Современная концепция гормезиса: обзор проблемы и значение для экологии // Успехи современной биологии 2023. T. 143, № 6. C. 553-564. doi: 10.31857/S0042132423060030
Abuelsoud W., Cortleven A., Schmülling T. Photoperiod stress induces an oxidative burst-like response and is associated with increased apoplastic peroxidase and decreased catalase activities // J. Plant Physiol. 2020. Vol. 253:153252. doi: 10.1016/j.jplph.2020.153252
Agathokleous E., Calabrese E. J., Fotopoulos V. Low-dose stress promotes sustainable food production // npj Sustain. Agric. 2024. Vol. 2:19. doi: 10.1038/s44264-024-00026-0
Ahmed H. A., Yu-Xin T., Qi-Chang Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review // S. Afr. J. Bot. 2020. Vol. 130. P. 75–89. doi: 10.1016/j.sajb.2019.12.018
Albright L., Both A. J., Chiu A. J. Controlling greenhouse light to a consistent daily integral // Trans. ASAE. 2000. Vol. 43. P. 421–431. doi: 10.13031/2013.2721
Appolloni E., Pennisi G., Paucek I., Cellini A., Crepaldi A., Spinelli F., Gianquinto G., Gabarrell X., Orsini F. Potential application of pre-harvest LED interlighting to improve tomato quality and storability // Postharvest Biol. Technol. 2023, Vol. 195:112113. doi: 10.1016/j.postharvbio.2022.112113
Avgoustaki D. D., Xydis G. Energy cost reduction by shifting electricity demand in indoor vertical farms with artificial lighting // Biosystems Engineering. 2021. Vol. 211. P. 219-229. doi: 10.1016/j.biosystemseng.2021.09.006
Bian Z.-H., Cheng R.-F., Yang Q.-C., Wang J., Lu C. Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce // J. Amer. Soc. Hort. Sci. 2016. Vol. 141(2). P. 186-195. doi: 10.21273/JASHS.141.2.186
Bian Z., Cheng R., Wang Yu., Yang Q., Lu C. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes // Environ. Exp. Bot. 2018. Vol. 153. P. 63–71. doi: 10.1016/j.envexpbot.2018.05.010
Bowsher C. G., Long D. M., Oaks A., Rothstein S. J. Effect of light/dark cycles on expression of nitrate assimilatory genes in maize shoots and roots // Plant Physiol. 1991. Vol. 95. P. 281–285.
Bugbee B., Koerner G., Albrechtsen R., Dewey W., Clawson S. Registration of cultivars: registration of 'USU-Apogee' wheat // Crop Sci. 1997. Vol. 37, no. 2. P. 626. doi: 10.2135/cropsci1997.0011183x003700020053x
Cagnola J. I., Cerdan P. D., Pacin M., Andrade A., Rodriguez V., Zurbriggen M. D., Legris M., Buchovsky S., Carrillo N., Chory J., Blázquez M. A., Alabadi D., Casal J. J. Long-day photoperiod enhances jasmonic acid-related plant defense // Plant Physiol. 2018. Vol. 178. P. 163–173. doi: 10.1104/pp.18.00443
Chang A. C., Yang T. Y., Riskowskic G. L. Ascorbic acid, nitrate, and nitrite concentration relationship to the 24 hour light/dark cycle for spinach grown in different condition // Food Chem. 2013. Vol. 138. P. 382–388. doi: 10.1016/j.foodchem.2012.10.036
Chen X., Li Y., Wang L., Yang Q., Guo W. Responses of butter leaf lettuce to mixed red and blue light with extended light/dark cycle period // Sci. Rep. 2022. Vol. 12:6924. doi: 10.1038/s41598-022-10681-3
Chen X. L., Yang Q. C. Effects of intermittent light exposure with red and blue light emitting diodes on growth and carbohydrate accumulation of lettuce // Sci. Hortic. 2018. Vol. 234. P. 220–226. doi: 10.1016/j.scienta.2018.02.055
Chi S.-H. Effect of photoperiod shortening on the nutrient uptake and carbon metabolism of tomato and hot pepper seedlings grown hydroponically // J. Bio-Environ. Control. 2003. Vol. 12. P. 121–126.
Cortleven A., Roeber V. M., Frank M., Bertels J., Lortzing V., Beemster G., Schmülling T. Photoperiod stress in Arabidopsis thaliana induces a transcriptional response resembling that of pathogen infection // Front. Plant Sci. 2022. Vol. 13:838284. doi: 10.3389/fpls.2022.838284
Covington M. F., Maloof J. N., Straume M., Kay S. A., Harmer S. L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development // Genome Bio. 2008. Vol. 9. P. 130. doi: 10.1186/gb-2008-9-8-r130
Dou H., Niu G. Plant responses to light. In: Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production / Eds. T. Kozai, G. Niu, M. Takagaki. Amsterdam: Elsevier, 2020. P. 153–166. doi: 10.1016/B978-0-12-816691-8.00009-1
Duarte-Sierra A., Tiznado-Hernández M.-E., Jha D. K. Postharvest hormesis in produce // Curr. Opin. Environ. Sci. Heal. 2022. Vol. 29. P. 100376. doi: 10.1016/j.coesh.2022.100376
Elkins C., van Iersel M. W. Longer photoperiods with the same daily light integral improve growth of rudbeckia seedlings in a greenhouse // HortScience 2020. Vol. 55. P. 1676–1682. doi: 10.21273/HORTSCI15200-20
Evans J. R., Poorter H. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain // Plant Cell Environ. 2001. Vol. 24. P. 755–767. doi: 10.1046/j.1365-3040.2001.00724.x
Evrard A., Ndatimana T., Eulgem T. FORCA, a promoter element that responds to crosstalk between defense and light signaling // BMC Plant Biol. 2009. Vol. 9:2. doi: 10.1186/1471-2229-9-2
Fan X.-X., Xue F., Song B., Chen L.-Z., Xu G., Xu H. Effects of blue and red light on growth and metabolism in pakchoi // Open Chem. 2019. Vol. 17, no 1. P. 456-464. doi: 10.1515/chem-2019-0038.
Frank M., Cortleven A., Novak O., Schmülling T. Root-derived trans-zeatin cytokinin protects Arabidopsis plants against photoperiod stress // Plant Cell Environ. 2020. Vol. 43:2637. doi: 10.1111/pce.13860
Galle A., Czekus Z., Toth L., Galgoczy L., Poor P. Pest and disease management by red light // Plant Cell Environ. 2021. Vol. 44:3197. doi: 10.1111/pce.14142
Gao W., He D., Ji F., Zhang S., Zheng J. Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach // Agronomy 2020. Vol. 10:1082. doi: 10.3390/agronomy10081082
García-Caparros P., Sabio F., Barbero F. J., Chica R. M., Lao M. T. Physiological responses of tomato and cucumber seedlings under different light–dark cycles // Agronomy 2020. Vol. 10:945. doi: 10.3390/agronomy10070945
Graamans L., Baeza E., van den Dobbelsteen A., Tsafaras I., Stanghellini C. Plant factories versus greenhouses: Comparison of resource use efficiency // Agric. Syst. 2018. Vol. 160. P. 31–43. doi: 10.1016/j.agsy.2017.11.003
Hang T., Lu N., Takagaki M., Mao H. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles // Sci. Hortic. 2019. Vol. 252. P. 113–120. doi: 10.1016/j.scienta.2019.03.057
Harmer S. L., Hogenesch J. B., Straume M., Chang H. S., Han B., Zhu T., Wang X., Kreps J. A., Kay S. A. Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock // Science 2000. Vol. 290:2110. doi: 10.1126/science.290.5499.2110
Hooks T., Sun L., Kong Yu., Masabni J., Niu G. Short-term pre-harvest supplemental lighting with different light emitting diodes improves greenhouse lettuce quality // Horticulturae 2022. Vol. 8, no. 5. P. 435. doi: 10.3390/horticulturae8050435
Ikkonen E.N., Shibaeva T.G., Sherudilo E.G., Titov A.F. Effect of continuous lighting on mitochondrial respiration in Solanacea plants // Russ. J. Plant Physiol. 2022. Vol. 69:114. doi: 10.1134/S1021443722060139
Ishii M., Ito T., Maruo T., Suzuki K., Matsuo K. Plant growth and physiological characters of lettuce plants grown under artificial light of different irradiating cycles // Environ. Control Biol. 1995. Vol. 33. P. 143–149. (In Japanese). doi: 10.2525/ecb1963.33.143
Kaiser E., Kusuma P., Vialet-Chabrand S., Folta K., Liu Y., Poorter H., Woning N., Shrestha S., Ciarreta A., van Brenk J., Karpe M., Ji. Y., David S., Zepeda C., Zhu X.-G., Huntenburg K., Verdonk J. C., Woltering E., Gauthier P. P. G., Courbier S., Taylor G., Marcelis L. F. M. Vertical farming goes dynamic: optimizing resource use efficiency, product quality, and energy costs // Front. Sci. 2024. Vol. 2:1411259. doi: 10.3389/fsci.2024.1411259
Kang J. H., Sugumaran K., Atulba S. L. S., Jeong B. R., Hwang S. J. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system // Hortic. Environ. Biotechnol. 2013. Vol. 54. P. 501–509. doi: 10.1007/s13580-013-0109-8
Kelly N., Choe D., Meng Q., Runkle E. S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod // Sci. Hortic. 2020. Vol. 272:109565. doi: 10.1016/j.scienta.2020.109565
Kikuchi Y. Life Cycle Assessment. In Plant Factory /Eds. T. Kozai, G. Niu, M. Takagaki. San Diego, CA, USA: Academic Press. 2016. P. 321–329. doi: 10.1016/B978-0-12-801775-3.00024-X
Kitaya Y., Niu G., Kozai T., Ohashi M. Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants // Hort. Sci. 1998. Vol. 33. P. 988–991. doi: 10.21273/HORTSCI.33.6.988
Koontz H. V., Prince R. P. Effect of 16 and 24 hours daily radiation (light) on lettuce growth // Hort. Sci. 1986. Vol. 21. P. 123-124. doi: 10.21273/HORTSCI.21.1.123
Kozai T. Terms related to PFALs. In Plant Factory Basics, Applications and Advances / Eds. T. Kozai, G. Niu, J. Masabni. San Diego, CA, USA: Academic Press, 2022. P. 11–23. doi: 10.1016/B978-0-323-85152-7.00007-0
Krasensky-Wrzaczek, J., Kangasjarvi J. The role of reactive oxygen species in the integration of temperature and light signals // J. Exp. Bot. 2018. Vol. 69. P. 3347. doi: 10.1093/jxb/ery074
Kumar D., Singh H., Bhatt U., Soni V. Effect of continuous light on antioxidant activity, lipid peroxidation, proline and chlorophyll content in Vigna radiata L. // Funct. Plant Biol. 2022. Vol. 49, no. 2. P. 145–154. doi: 10.1071/fp21226
Kurata H., Achioku T., Furusaki S. The light/dark cycle operation with an hour-scale period enhances caffeine production by Coffea arabica, cells // Enzyme Microb. Technol. 1998. Vol. 23. P. 518–523.
Lanoue J., Little C., Hao X. The power of far-red light at night: photomorphogenic, physiological, and yield response in pepper during dynamic 24 hour lighting // Front. Plant Sci. 2022. V. 13:857616. doi: 10.3389/fpls.2022.857616
Lazzarin M., Meisenburg M., Meijer D., van Ieperen W., Marcelis L. F. M., Kappers I. F., van der Krol A. R., van Loom J. J. A., Dicke M. LEDs make it resilient: effects on plant growth and defense // Trends Plant Sci. 2021. Vol. 26:496. doi: 10.1016/j.tplants.2020.11.013
Lefsrud M. G., Kopsell D. A., Kopsell D. E., Curran-Celentano J. Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment // Physiol. Plant. 2006. Vol. 127. P. 624–631. doi: 10.1111/j.1399-3054.2006.00692.x
Liu W., Zha L., Zhang Y. Growth and nutrient element content of hydroponic lettuce are modified by LED continuous lighting of different intensities and spectral qualities // Agronomy 2020. Vol. 10:1678. doi: 10.3390/agronomy10111678
Mao H., Hang T., Zhang X., Lu N. Both multi-segment light intensity and extended photoperiod lighting strategies, with the same daily light integral, promoted Lactuca sativa L. growth and photosynthesis // Agronomy 2019. Vol. 9:857. doi: 10.3390/agronomy9120857
Matsuda R., Ozawa N., Fujiwara K. Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences // Sci. Hortic. 2014. Vol. 170. P. 150. doi: 10.1016/j.scienta.2014.03.014
Meng Q., Severin S.N. Continuous light can promote growth of baby greens over diurnal light under a high daily light integral // Environ. Exp. Bot. 2024. Vol. 220:105695. doi: 10.1016/j.envexpbot.2024.105695
Nitschke S., Cortleven A., Iven T., Feussner I., Havaux M., Riefler M., Schmulling T. Circadian stress regimes affect the circadian clock and cause jasmonic acid-dependent cell death in cytokinin-deficient Arabidopsis plants // Plant Cell 2016. Vol. 28:1616. doi: 10.1105/tpc.16.00016
Nitschke S., Cortleven A., Schmülling T. Novel stress in plants by altering the photoperiod // Trends Plant Sci. 2017. Vol. 22:913. doi: 10.1016/j.tplants. 2017.09.005
Ohtake N., Ishikura M., Suzuki H. Continuous irradiation with alternating red and blue light enhances plant growth while keeping nutritional quality in lettuce // Hort. Sci. 2018. Vol. 53:1804. doi: 10.21273/HORTSCI13469-18
Ohyama K., Omura Y., Kozai T. Effects of air temperature regimes on physiological disorders and floral development of tomato seedlings grown under continuous light // Hort. Sci. 2005. Vol. 40:1304. doi: 10.21273/HORTSCI.40.5.1304
Palmer S., van Iersel M. W. Increasing growth of lettuce and mizuna under sole-source LED lighting using longer photoperiods with the same daily light integral // Agronomy 2020. Vol. 10:1659. doi: 10.3390/agronomy10111659
Proietti S., Moscatello S., Riccio F., Downey P., Battistelli A. Continuous lighting promotes plant growth, light conversion efficiency, and nutritional quality of Eruca vesicaria (L.) Cav. in controlled environment with minor effects due to light quality // Front. Plant Sci. 2021. Vol. 12:730119. doi: 10.3389/fpls.2021.730119
Rengasamy N., Othman R. Y., Che H. S., Harikrishna J. A. Artificial Lighting Photoperiod Manipulation Approach to Improve Productivity and Energy Use Efficacies of Plant Factory Cultivated Stevia rebaudiana // Agronomy 2022, Vol. 12:1787. doi: 10.3390/agronomy12081787
Roeber V. M., Bajaj I., Rohde M., Schmulling T., Cortleven A. Light acts as a stressor and influences abiotic and biotic stress responses in plants // Plant Cell Environ. 2021. Vol. 44:645. doi: 10.1111/pce.13948
Roeber V. M., Schmülling T., Cortleven A. The photoperiod: handling and causing stress in plants // Front. Plant Sci. 2022. Vol. 12:781988. doi: 10.3389/fpls.2021.781988
Rubaeva A. A., Sherudilo E. G., Shibaeva T. G. LED Continuous Lighting Reduces Nitrate Content in Brassicaceae Microgreens // E3S Web of Conferences 2023. Vol. 411:01068. doi: 10.1051/e3sconf/202341101068
Rubaeva A. A., Sherudilo E. G., Ikkonen E. N., Titov A. F., Shibaeva T. G. Effect of pre-harvest continuous lighting on yield, nutritional quality and energy efficiency in indoor production of pea shoots // AIP Conference Proceedings 2024. Vol. 3184, no. 1. P. 20046. doi: 10.1063/5.0212331
Ruban A.V., Johnson M.P., Duffy C. D. P. The photoprotective molecular switch in the photosystem II antenna // Biochim. Biophys. Acta (BBA) Bioenerg. 2012. Vol. 1817. P. 167–181. doi: 10.1016/j.bbabio.2011.04.007
Samuoliene G., Brazaityte A., Jankauskiene J., Virsile A., Sirtautas R., Novickovas A., Sakalauskiene S., Sakalauskaite J., Duchovskis P. LED irradiance level affects growth and nutritional quality of Brassica microgreen // Cent. Eur. J. Biol. 2013. Vol. 8. P. 1241-1249. doi: 10.2478/s11535-013-0246-1
Schaffer R., Landgraf J., Accerbi M., Simon V., Larson M., Wisman E. Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis // Plant Cell 2001.Vol. 13. P. 113-123. doi: 10.1105/tpc.13.1.113
Shafiq I., Hussain S., Raza M. A., Iqbal N., Asghar M. A., Raza A., Fan Y.-F., Mumtaz M., Shoaib M., Ansar M., Manaf A., Yang W., Yang F. Crop photosynthetic response to light quality and light intensity // J. Integr. Agric. 2021. Vol. 20. P. 4–23. doi: 10.1016/S2095-3119(20)63227-0
Shen W., Zhang W., Li J., Huang Z., Tao Yu., Hong J., Zhang L., Zhou Ya. Pre-harvest short-term continuous LED lighting improves the nutritional quality and flavor of hydroponic purple-leaf lettuce // Sci. Hortic. 2024. Vol. 334:113304. doi: 10.1016/j.scienta.2024.113304
Shibaeva T. G., Mamaev A. V., Sherudilo E. G., Titov A. F. The role of the photosynthetic daily light integral in plant response to extended photoperiods // Russ. J. Plant Physiol. 2022а. Vol. 69:7. doi: 10.1134/S1021443722010216
Shibaeva T. G., Sherudilo E. G., Rubaeva A. A., Titov A. F. Continuous lighting enhances yield and nutritional value of four genotypes of Brassicaceae microgreens // Plants 2022б. Vol. 11:176. doi: 10.3390/plants11020176
Shibaeva T. G., Mamaev A. V., Titov A. F. Possible physiological mechanisms of leaf photodamage in plants grown under continuous lighting // Russ. J. Plant Physiol. 2023а. Vol. 70:15. doi: 10.1134/S1021443722602646
Shibaeva T. G., Sherudilo E. G., Rubaeva A. A., Levkin I. A., Titov A. F. Effects of abnormal light-dark cycles on pigments of Brassicaceae and Solanaceae plants // Russ. J. Plant Physiol. 2023б. Vol. 70:168. doi: 10.1134/S1021443723700310
Shibaeva T. G., Rubaeva A. A., Sherudilo E. G., Titov A. F. Continuous lighting increases yield and nutritional value and decreases nitrate content in Brassicaceae microgreens // Russ. J. Plant Physiol. 2023в. Vol. 70:118. doi: 10.1134/S1021443723601337
Shibaeva T. G., Sherudilo E. G., Rubaeva A. A., Shmakova N.Y., Titov A. F. Response of native and non-native subarctic plant species to continuous illumination by natural and artificial light // Plants 2024а. Vol. 13:2742. doi: 10.3390/plants13192742
Shibaeva T. G., Sherudilo E. G., Ikkonen E. N., Rubaeva A. A., Levkin I. A., Titov A. F. Effects of extended light/dark cycles on Solanaceae plants // Plants 2024б. Vol. 13:244. doi: 10.3390/plants13020244
Shibaeva T. G., Mamaev A. V., Sherudilo E. G., Ikkonen E. N., Titov A. F. Responses of tomato and eggplant to abnormal light/dark cycles and continuous lighting // Russ. J. Plant Physiol. 2024в. Vol. 71:12. doi: 10.1134/S1021443723602951
Shibaeva T., Rubaeva А., Sherudilo E., Ikkonen E., Titov A. The effect of shortened light/dark cycles on growth, yield and nutritional value of pea shoots // Lecture Notes in Networks and Systems 2024г. Vol. 1130. doi: 10.1007/978-3-031-70673-8_14
Shibaeva T.G., Titov A.F. Photoperiod Stress in Plants: A New Look at Plant Response to Abnormal Light-Dark Cycles // Russ. J. Plant Physiol. 2025a.Vol. 72, №4.
Shibaeva T. G., Rubaeva A. A., Sherudilo E. G., Titov A. F. Changing the Photoperiod at the End of the Production Cycle Allows to Increase the Productivity and Nutritional Value of Rapini Microgreens // Russ. J. Plant Physiol. 2025б. Vol. 72, №3.
Shimizu S., Yamauchi Y., Ishikawa A. Photoperiod following inoculation of Arabidopsis with Pyricularia oryzae (syn. Magnaporthe oryzae) influences on the plant–pathogen interaction // Int. J. Mol. Sci. 2021. Vol. 22:5004. doi: 10.3390/ijms22095004
Silva L. M., Cruz L. P., Pacheco V. S., Machado E. C., Purquerio L. F. V., Ribeiro R. V. Energetic efficiency of biomass production is affected by photoperiod in indoor lettuce cultivation // Theor. Exp. Plant Physiol. 2022. Vol. 34. P. 265–276. doi: 10.1007/s40626-022-00246-0
Sysoeva M. I., Markovskaya E. F., Shibaeva T. G. Plant under continuous light: a review // Plant Stress 2010. Vol. 4, no. 1. P. 5–17.
Tsuruyama J., Shibuya T. Growth and flowering responses of seed-propagated strawberry seedlings to different photoperiods in controlled environment chambers // HortTechnology 2018. Vol. 28. P. 453–458. doi: 10.21273/HORTTECH04061-18
Velez-Ramirez A. I., van Ieperen W., Vreugdenhil D., Millenaar F. F. Plants under continuous light // Trends Plant Sci. 2011. Vol. 16. P. 310–318. doi: 10.1016/j.tplants.2011.02.003
Velez-Ramirez A. I., Heuvelink E., van Ieperen W., Vreugdenhil D., Millenaar F. Continuous light as a way to increase greenhouse tomato production: Expected challenges // ISHS Acta Hortic. 2012. V. 956. P. 51–57. doi: 10.17660/ActaHortic.2012.956.3
Velez-Ramirez A. I., Dünner-Planella G., Vreugdenhil D., Millenaar F. F., van Ieperen W. On the induction of injury in tomato under continuous light: circadian asynchrony as the main triggering factor // Funct. Plant Biol. 2017. Vol. 6. P. 597–611. doi: 10.1071/FP16285
Warner R., Wu B.-S., MacPherson S., Lefsrud M. How the Distribution of Photon Delivery Impacts Crops in Indoor Plant Environments: A Review // Sustainability 2023. Vol. 15:4645. doi: 10.3390/su15054645
Watson A., Ghosh S., Williams M. J., Cuddy W. S., Simmonds J., ReyM. D., Asyraf Md Hatta M., Hinchliffe A., Steed A., Reynolds D., Adamski N. M., Breakspear A., Korolev A., Rayner T., Dixon L. E., Riaz A., Martin W., Ryan M., Edwards D., Hickey L. T. Speed breeding is a powerful tool to accelerate crop research and breeding // Nature Plants 2018. Vol. 4, no. 1. P. 23–29. doi: 10.1038/s41477-017-0083-8
Weaver G., van Iersel M.W. Longer Photoperiods with Adaptive Lighting Control Can Improve Growth of Greenhouse-grown ‘Little Gem’ Lettuce (Lactuca sativa) // HortScience 2020. Vol. 55. P. 573–580. doi: 10.21273/HORTSCI14721-19
Xu W., Lu N., Kikuchi M., Takagaki M. Continuous lighting and high daily light integral enhance yield and quality of mass-produced nasturtium (Tropaeolum majus L.) in plant factories // Plants 2021. Vol. 10: 1203. doi: 10.3390/plants10061203
Yan Z., Wang L., Dai J., Liu Y., Lin D., Yang Y. Morphological and physiological responses of cucumber seedlings to different combinations of light intensity and photoperiod with the same daily light integral // HortScience 2021. Vol. 56. P. 1430–1438. doi: 10.21273/HORTSCI16153-21
Yang Y.-X., Wang M.-M., Yin Y.-L., Onac E., Zhou G.-F., Peng S., Xia X/-J., Shi K., Yu J.-Q., Zhou Y.-H. RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants // BMC Genomics 2015. Vol. 16:120. doi: 10.1186/s12864-015-1228-7
Yang X., Gil M.I., Yang Q., Tomas‐Barberan F.A. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices // Compr. Rev. Food Sci. Food Saf. 2022. Vol. 21, no. 1. P. 4–45. doi: 10.1111/1541-4337.12877
Yao Y., Zhang P., Wang H.B., Lu Z.Y., Liu C.J., Liu H., Yan G.J. How to advance up to seven generations of canola (Brassica napus L.) per annum for the production of pure line populations? // Euphytica 2016. Vol. 209. P. 113–119. doi: 10.1007/s10681-016-1643-0
Zhang X., He D., Niu G., Yan Z., Song J. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory // Int. J. Agric. Biol. Eng. 2018. Vol. 11. P. 33–40. doi: 10.25165/j.ijabe.20181102.3420
Zhang Yu., Zha L., Liu W., Zhou Ch., Shao M., Yang, Q. LED light quality of continuous light before harvest affects growth and AsA metabolism of hydroponic lettuce grown under increasing doses of nitrogen // Plants 2021. Vol. 10, no. 1. P. 176. doi: 10.3390/plants10010176
Zhao X., Peng J., Zhang L., Yang X., Qiu Yu., Cai Ch., Hu J., Huang T., Liang Yi., Li Z., Tian M., Liu F., Wang Zh. Optimizing the quality of horticultural crop: Insights into pre-harvest practices in controlled environment agriculture // Front. Plant Sci. 2024. Vol. 15:1427471. doi: 10.3389/fpls.2024.1427471
Zhen S., van Iersel M., Bugbee B. Why Far-Red Photons Should Be Included in the Definition of Photosynthetic Photons and the Measurement of Horticultural Fixture Efficacy // Front. Plant Sci. 2021. Vol. 12:693445. doi: 10.3389/fpls.2021.693445
Zheng Z, Wang H. B., Chen G. D., Yan G. J., Liu C. J. A procedure allowing up to eight generations of wheat and nine generations of barley per annum // Euphytica 2013. Vol. 191. P. 311–316. doi: 10.1007/s10681-013-0909-z
Zhou W., Wenke L., Qichang Y. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes // J. Plant Nutr. 2013. Vol. 36. P. 481-490. doi: 10.1080/01904167.2012.748069
Zhou J., Wang J.Z., Hang T., Li P.P. Photosynthetic characteristics and growth performance of lettuce (Lactuca sativa L.) under different light/dark cycles in mini plant factories // Photosynthetica 2020. Vol. 58. P. 740–747. doi: 10.32615/ps.2020.013
DOI: http://dx.doi.org/10.17076/eb2098
Ссылки
- На текущий момент ссылки отсутствуют.
© Труды КарНЦ РАН, 2014-2019