МЕХАНИЗМЫ ФОРМИРОВАНИЯ ЯДРОВОЙ ДРЕВЕСИНЫ: ФИЗИОЛОГО-БИОХИМИЧЕСКИЕ И МОЛЕКУЛЯРНО ГЕНЕТИЧЕСКИЕ АСПЕКТЫ

Наталия Алексеевна Галибина, Ксения Михайловна Никерова, Юлия Леонидовна Мощенская, Мария Алексеевна Ершова, Natalia Galibina, Ksenia Nikerova, Yulia Moshchenskaya, Maria Yershova

Аннотация


Ядровая древесина – физиологически неактивная часть ксилемы, которая образуется в результате смерти клеток паренхимы и характеризуется накоплением экстрактивных веществ, придающих древесине устойчивость к биодеградации. В обзоре обобщена последняя информация об анатомических, биохимических особенностях формирования ядровой древесины, описаны ключевые стадии ее формирования у основных лесообразующих пород, рассмотрена ее биологическая роль. Отдельное внимание уделено описанию последних достижений в изучении генов, кодирующих ключевые ферменты углеводного и фенольного обменов, метаболизма гормонов, некоторые факторы транскрипции, экспрессия которых возрастает при образовании ядровой древесины. В обзоре представлены оригинальные гипотезы, которые рассматривают образование ядровой древесины как форму старения тканей и сравнивают с программируемой клеточной смертью.


Ключевые слова


древесные растения; ксилогенез; заболонная древесина; ядровая древесина; метаболиты; активность ферментов; экспрессия генов

Полный текст:

PDF

Литература


Ванин С. И. Древесиноведение / Ленинград гослестехиздат, 1940.

Иванов Л. А. Анатомия растений /Ленинград гослестехиздат, 1939. С. 83-96.

Уголев Б. Н. Древесиноведение и товароведение коммерческих пород: учеб. пособие к проведению лабораторной работы для студентов по спец. 022900 / Б. Н.

Уголев; МГУЛ. М.: Изд-во МГУЛ, 2004. 76 с.

Bamber R. K., Fukazawa K. Sapwood and heartwood: A review // Forestry Abstr. 1985. Vol. 46 P. 567-580.

Beekwilder J., Houwelingen A., Cankar K., Dijk A., Jong R., Stoopen G., Bouwmeester H., Achkar J., Sonke T., Bosch D. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene // Plant Biotechnology Journal. 2014. Vol. 12. no. 2. P. 174-182. doi: 10.1111/pbi.12124

Belt T., Keplingerb T., Hänninena T., Rautkaria L. Cellular level distributions of Scots pine heartwood and knot heartwood extractives revealed by Raman spectroscopy imaging // Industrial Crops & Products. 2017. Vol. 108 P. 327–335. doi: 10.1016/j.indcrop.2017.06.056

Bergström B. Chemical and structural changes during heartwood formation in Pinus sylvestris // Forestry. 2003. Vol. 76. no. 1. P. 45-53. https://doi.org/10.1093/forestry/76.1.45

Bergström B., Gustafsson G., Gref R., Ericsson A. Seasonal changes of pinosylvin distribution in the sapwood/heartwood boundary of Pinus sylvestris // Trees. 1999. no.14. P. 65-71. https://doi.org/10.1007/PL00009754

Beritognolo I., Magel E., Abdel-Latif A., Charpentier J., Jay-Allemand C., Breton C. Expression of genes encoding chalcone synthase, flavanone 3-hydroxylase and dihydroflavonol 4-reductase correlates with flavanol accumulation during heartwood formation in Juglans nigra // Tree Physiology 2002. no. 22. P. 291–300. doi: 10.1093/treephys/22.5.291

Bollhöner B., Prestele J., Tuominen H. Xylem cell death: emerging understanding of regulation and function // Journal of Experimental Botany. 2012. Vol. 63. no. 3. P. 1081–1094. doi:10.1093/jxb/err438 2012

Bowman, W. P., Barbour, M. M., Turnbull, M. H., Tissue, D. T., Whitehead, D., Griffin, K. L. Sap flow rates and sapwood density are critical factors in within‐and between‐tree variation in CO2 efflux from stems of mature Dacrydium cupressinum trees // New Phytologist. 2005. Vol. 167. no. 3. P. 815-828.

Burtin P., Jay-Allemand C., Charpentier J., Janin G. Natural wood colouring process in Juglans sp. (J. nigra, J. regia and hybrid J. nigra 23 ´ J. regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood// Trees.1998. no.12. P. 258-264.

Celedon J., Chiang A., Yuen M., Diaz‐Chavez M. L., Madilao L. L., Finnegan P. M., Barbour E. L., Bohlmann J. Heartwood‐specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)‐santalol fragrance biosynthesis // The Plant Journal. 2016. Vol. 86. no. 4. P. 289-299. doi: 10.1111/tpj.13162

Celedon J., Bohlmann J. An extended model of heartwood secondary metabolism in formedby functional genomics // Tree Physiology no. 38. P. 311–319. doi:10.1093/treephys/tpx070 2017

Dadswell H. E., Hillis W. E. Chapter 1-Wood // Wood Extractives and their Significance to the Pulp and Paper Industry. 1962. P. 3-55.

Dehon L., Macheix J. J., Durand M. Involvement of peroxidases in the formation of the brown coloration of heartwood in Juglans nigra // Journal of Experimental Botany. 2002. Vol. 53. no. 367. P. 303-311

Dellus V., Mila I., ScalabertA., Menard C., Michon V., Catheine L. M. Herve du Penhoat Douglas fir polyphenols and heartwood formation // Phytochemistry. 1997. Vol.45. no. 8. P. 1573-1578.

Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C., Lepiniec L. MYB transcription factors in Arabidopsis // Trends in Plant Science. 2010. Vol. 15. no. 10. P. 573-581. https://doi.org/10.1016/j.tplants.2010.06.005

Duroux L., Delmotte F., Lancelin J., Keravis G., Jay-Allemand C., Insight into naphthoquinone metabolism: β-glucosidase-catalysed hydrolysis of hydrojuglone β-d-glucopyranoside // Biochem J. 1998. Vol. 333. no. 2. P. 275-283 https://doi.org/10.1042/bj3330275

Ekeberg D., Flæte P., Eikenes M., Fongen M., Naess-Andresen C. F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinussylvestris L.) by gas chromatography // Journal of Chromatography A. 2006. no. 1109. P. 267–272.

Farage-Barhom S., Burd S., Sonego L., Perl-Treves R., Lers A. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes // Journal of Experimental Botany. 2008. Vol. 59. no. 12. P. 3247–3258. doi:10.1093/jxb/ern176

Fromm J. Cellular aspects of wood formation. / Springer Heidelberg New York Dordrecht London. 2013. P.3-39.

Fujii T., Suzuki Y., Kuroda N. Bordered pit aspiration in the wood of Cryptomeria japonica in relation to air permeability // IAWA J. 1997. Vol. 18 no. 1. P. 69-76.

Gjerdrum P. Heartwood in relation to age and growth rate in Pinus sylvestris L. in Scandinavia //Forestry. 2003. vol.76. no 4. P. 413-424.

Grover A. Plant chitinases: Genetic diversity and physiological roles // Critical Reviews in Plant Sciences. 2012. Vol. 31. P. 57-73. doi.org/10.1080/07352689.2011.616043

Hachez C., Zelazny E., Chaumont F. Modulating the expression of aquaporin genes in planta: A key to understand their physiological functions? // Biochimica et Biophysica Acta (BBA) -Biomembranes. 2006. Vol. 1758. no. 8. P. 1142-1156.

Harju A. M., Venalainen M. Measuring the decay resistance of Scots pine heartwood indirectly by the Folin-Ciocalteu assay // Canadian Journal of Forest Research. 2006. no. 36. P. 1797-1804. https://doi.org/10.1139/x06-074

Harju K., Vesterinen J., Yli-Kauhaluoma J. Solid-Phase Synthesis of Amino Acid Derived N-Unsubstituted Pyrazoles via Sydnones // Organic Letters. 2009. Vol. 11. no. 11. P. 2219-2221. doi: 10.1021/ol900704b

Hauch S., Magel E. Extractable activities and protein content of sucrose-phosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation // Planta. 1998. Vol. 207. P. 266-274.

Hillis W. E. Heartwood and tree exudates / Springer-Verlag, Berlin, Germany. 1987. P. 268.

Holl W., Lendzian K. Respiration in the sapwood and heartwood of Robinia pseudoacacia // Phytochemistry. 1973. Vol. 12. no. 5. P. 975-977. https://doi.org/10.1016/0031-9422(73)85002-2

Houle D., LaFlèche M. R., Duchesne L. Sequential extractions of elements in tree rings of balsam fir and white spruce // Communications in soil science and plant analysis. 2008. Vol. 39. no. 7-8. P. 1138-1146.

Huang Z., Meilan R., Woeste K. A KNAT3-like homeobox gene from Juglans nigra L., JnKNAT3-like, highly expressed during heartwood formation // Plant Cell Rep. 2009. no. 28. P. 1717–1724. doi 10.1007/s00299-009-0771-6 2009

Huang Z., Tsai C., Harding S., Meilan R., Woeste K. A Cross-species Transcriptional Profile Analysis of Heartwood Formation in Black Walnut// Plant MolBiol Rep. 2010. no. 28. P. 222–230. DOI 10.1007/s11105-009-0144-x

IAWA Committee Multilingual glossary of terms used in wood anatomy. Committee on nomenclature / International Association of Wood Anatomists. 1964.

Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development // Current Opinion in Plant Biology. 2004. no. 7. P.235–246.

Kuroda K., Yamashita K., Fujiwara F. Cellular level observation of water loss and the refilling of tracheids in the xylem of Cryptomeria japonica during heartwood formation // Trees. 2009. no. 23. P. 1163–1172. doi 10.1007/s00468-009-0356-6

Lim K., Harju A., Paulin L., Kärkkäinen K., Paasela T., Venäläinen M., Auvinen P., Teeri T. Developmental Changes in Scots Pine Transcriptome during Heartwood Formation // Plant physiology. 2016. no. 172(3). P. 1-38. doi: 10.1104/pp.16.01082

Lim K. Scots pine (Pinus sylvestris L.) heartwood formation and wounding stress: A view from the transcriptome // Biology. 2017.

Macfarlane C., Lardner T., Patterson K., Grigg A. H. A new model for predicting understorey leaf area from biomass in eucalypt forest to test the ecohydrological equilibrium theory // Methods in Ecology and Evolution. 2010. Vol. 1. no. 4. P. 371-379. https://doi.org/10.1111/j.2041-210X.2010.00038.x

Magel E., Einig W., Hampp R. Carbohydrates in trees // Developments in Crop Science. 2000. Vol. 26. P. 317-336. https://doi.org/10.1016/S0378-519X(00)80016-1

Magel E., Holl W. Storage Carbohydrates and Adenine Nucleotides in Trunks of Fagus sylvatica L. in Relation to Discolored Wood // Holzforschung. 1993. Vol. 47. no. 1. P. 19-24. https://doi.org/10.1515/hfsg.1993.47.1.19

Magel E., Hübner B. Distribution of Phenylalanine Ammonia Lyase and Chalcone Synthase within Trunks of Robinia pseudoacacia L. // Botanica Acta. 1997. Vol. 110. no. 4. https://doi.org/10.1111/j.1438-8677.1997.tb00646.x

Mancuso S., Shabala S. Waterlogging signalling and tolerance in plants. / Berlin Heidelberg, Germany: Springer. 2010. P. 1-294.

Mayer I., Koch G., Puls J. Topochemical investigations of wood extractives and their influence on colour changes in American black cherry (Prunus serotina Borkh.) // Holzforschung. 2006. Vol. 60. no. 6. P. 589-594. https://doi.org/10.1515/HF.2006.100

Meerts P. Mineral nutrient concentrations in sapwood and heartwood: a literature review // Ann. For. Sci. 2002. Vol. 59. P. 713–722. doi: 10.1051/forest:2002059

Morais M. C., Pereira H. Variation of extractives content in heartwood and sapwood of Eucalyptus globulus trees // Wood Science and Technology. 2012. Vol. 46. no. 4. P. 709-719.

Nair M. N. B., Shah J.J., Pandalai R. C.Wood anatomy and histochemical changes of sapwood during heartwood formation in Bridelia retusa Spreng // Plant Sci. 1981. Vol. 90. no.5. P.425-433.

Nakada R., Fujisawa Y., Hirakawa Y. Soft X-ray observation of water distribution in the stem of Cryptomeria japonica D. Don I: General description of water distribution // J Wood Sci. 1999. Vol. 45 P. 188-193

Nakada R. Within-Stem Water Distribution in Living Trees of Some Conifers // IAWA Journal. 2006. Vol. 27. no.3. P. 313-327. https://doi.org/10.1163/22941932-90000157

Nakada R. Variation of water distribution within living stems and its causal factors in Cryptomeria japonica (L.f.) D. Don // Bulletin of the Forest Tree Breeding Center (Japan). 2007. no. 23. P. 121-254

Nakada R., Fukatsu E. Seasonal variation of heartwood formation in Larix kaempferi // Tree Physiology. 2012. Vol.32. P. 1497–1508. doi:10.1093/treephys/tps108

Nakano Y., Yamaguchi M., Endo H., Rejab N. A., Misato O. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants // Frontiers in Plant Science. 2015. https://doi.org/10.3389/fpls.2015.00288

Nawrot M. Nawrot, W. Pazdrowski, M. Szymański.Dynamics of heartwood formation and axial and radialdistribution of sapwood and heartwood in stemsof European larch (Larix decidua Mill.) // Journal of forest science. 2008. no. 54. P. 409–417.

Nilsson M., Wikman S., Eklund L. Induction of discolored wood in Scots pine (Pinus sylvestris) // Tree physiology. 2002. Vol. 22. no. 5. P. 331-338.

Okada N., Hirakawa Y., Katayama Y. Application of activable tracers to investigate radial movement of minerals in the stem of Japanese cedar (Cryptomeria japonica) // Journal of wood science. 2011. Vol. 57. no. 5. P. 421-428.

Okada N., Hirakawa Y., KatayamaY.Radial movement of sapwood-injected rubidium into heartwoodof Japanese cedar (Cryptomeria japonica) in the growing period // J. Wood. Sci. 2012. no. 58. P. 1–8. doi 10.1007/s10086-011-1218-6

Onuorah E. O. The Efficacy of Heartwood Extracts of Afzelia africana and Erythrophleum suaveolens as Wood Preservative // Journal-timber development association of India. 2001. Vol. 47. no. 1/2. P. 10-26.

Paasela, T., Lim, K. J., Pietiäinen, M., Teeri, T. H. The O‐methyltransferase PMT 2 mediates methylation of pinosylvin in Scots pine // New Phytologist. 2017. Vol. 214. no. 4. P. 1537-1550.

Panshin A. J., de Zeeuw C. Textbook of wood technology/ McGraw-Hill. Toronto. Orlando. Canada. 1980. P. 722.

Partanen J., Harju A., Venäläinen M., Kärkkäinen K. Highly heritable heartwood properties of Scots pine: possibilities for selective seed harvest in seed orchards // Can. J. For. Res. 2011. no. 41. P. 1993–2000. doi:10.1139/X11-116

Pfautsch, S., Macfarlane, C., Ebdon, N., Meder, R. Assessing sapwood depth and wood properties in Eucalyptus and Corymbia spp. using visual methods and near infrared spectroscopy (NIR). // Trees. 2012. Vol. 26. no. 3. P. 963-974.

Plomion C., Leprovost G., Stokes A. Wood formation in trees // Plant physiology. 2001. Vol. 127. no. 4. P. 1513-1523.

Račko V., Kačík, F., Mišíková, O., Hlaváč, P., Čunderlík, I.,

Ďurkovič, J. The onset of hazel wood formation in Norway spruce (Picea abies [L.] Karst.) stems // Annals of forest science. 2018. Vol. 75. no. 3. P. 82.

Rust S. Comparison of three methods for determining the conductive xylem area of Scots pine (Pinus sylvestris) // Forestry. 1999. Vol. 72. no. 2. P. 103-108.

Saito K. Mitsutani, T., Imai, T., Matsushita, Y., Fukushima, K Discriminating the indistinguishable sapwood from heartwood in discolored ancient wood by direct molecular mapping of specific extractives using time-of-flight secondary ion mass spectrometry // Analytical chemistry. 2008. Vol. 80. no. 5. P. 1552-1557.

Scheffer T. C., Cowling E. Natural resistance of wood to microbial deterioration // Ann. Rev. Phytopathol. 1966. Vol. 4. P. 147-170.

Schultz T. P., Nicholas D. D. Naturally durable heartwood: Evidence for a proposed dual defensive function of the extractives // Phytochem. 2000. Vol. 54. P. 47-52.

Shain L., Mackay J. P. G. Seasonal fluctuation in respiration if aging xylem in relation to heartwood formation in Pinus radiata // Can. J. Bot. 1973. Vol. 51. P. 737-741.

Smith A. L., Campbell C. L., Walker D. B., Hanover J. W. Extracts from black locust as wood preservatives: Extraction of decay resistance from black locust heartwood // Holzforschung. 1989. Vol. 43. P. 293-296.

Sperry J. S., Perry A. H., Sullivan J. E. M. Pit membrane degradation and air-embolism formationin aging xylem vessels of Populus tremuloides // J. Exp.Bot. 1991. Vol. 42. no. 244. P. 1399-1406.

Spicer R. Senescence in Secondary Xylem: Heartwood Formationas an Active Developmental Program // Physiological Ecology. 2005. P. 457-475. https://doi.org/10.1016/B978-012088457-5/50024-1

Spicer R., Holbrook N.M. Parenchyma cell respiration and survival in secondary xylem: does metabolic activity decline with cell age // Plant Cell Env. 2007. Vol. 30. P.934–943.

Tanaka T., Jiang Z. H., Kouno I. Distribution of ellagic acid derivatives and a diarylheptanoid in wood of Platycarya strobilacea // Phytochemistry. 1998. Vol. 47. no. 5. P. 851-854.

Taylor A., Gartner B., Morrell J. Heartwood Formation and natural durability – a review // Wood and fiber science. 2002. Vol. 34. no.4. P.587-611.

Wang L., Li X., LianH., Ni D., He Y., Chen X., Ruan Y. Evidence That High Activity of Vacuolar Invertase Is Required for Cotton Fiber and Arabidopsis Root Elongation through Osmotic Dependent and Independent Pathways, Respectively // Plant Physiology. 2010. Vol. 154. P. 744–756.

Winter H., Huber S. Regulation of Sucrose Metabolism in Higher Plants: Localization and Regulation of Activity of Key Enzymes // Critical Reviews in Biochemistry and Molecular Biology. 2000. Vol. 35 no.4. P. 253-289.

Xu D., Sung S., Loboda T., Kormanik P., Black C. Characterization of Sucrolysis via the Uridine Diphosphate and Pyrophosphate-Dependent Sucrose Synthase Pathway // Plant Physiol. 1989. Vol. 90. P. 635-642.

Yamamoto K. Yearly and seasonal process of maturation of ray parenchyma cells in Pinus species // Res. Bull. Coll. Exp. For. Hokkaitlo Univ. 1982. Vol. 39. P. 245-296.

Yang J., Kamdem D., Keathley D., Han K. Seasonal changes in gene expression at the sapwood–heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis // Tree Physiology. 2004. Vol.24. P. 461–474.

Ziegler H. Biologische Aspekte der Kernholzbildung // HOLZ als Roh-und Werkstoff. 1968. Vol. 26. no. 2. P. 61-68.




DOI: http://dx.doi.org/10.17076/eb1315

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019