5. ФЛАВИНСОДЕРЖАЩИЕ МОНООКСИГЕНАЗЫ (FMO) – ФЕРМЕНТЫ ФАЗЫ I БИОТРАНСФОРМАЦИИ КСЕНОБИОТИКОВ. НОМЕНКЛАТУРА, СТРУКТУРА, МОЛЕКУЛЯРНОЕ РАЗНООБРАЗИЕ, ФУНКЦИЯ, УЧАСТИЕ В ФУНКЦИОНИРОВАНИИ СИСТЕМЫ БИОТРАНСФОРМАЦИИ. СРАВНЕНИЕ С ЦИТОХРОМАМИ Р450 (ОБЗОР)
Аннотация
FMO (EC 1.14.13.8) – древняя и консервативная группа ферментов, присутствующая во всех без исключения живых организмах. FMO - микросомальный флавопротеин, который окисляет молекулы, содержащие нуклеофильные гетероатомы азота, серы, фосфора или селена. FMO не окисляют физиологически эссенциальные нуклеофилы. Простетической группой FMO является FAD. Кроме того, фермент использует NADPH и молекулярный кислород, чаще всего катализируя образование монооксигенированных субстратов, NADP+ и воду, как побочные продукты реакции. Гены FMO1 – 4 человека близко расположены на хромосоме, что у млекопитающих явилось результатом предшествующей генной дупликации и локализованы на хромосоме 1q24.3, в то время как FMO5 расположен на хромосоме 1q21.1. FMO5 – первый фермент, который появился у млекопитающих, поскольку генам FMO5 свойственна более высокая вариабельность нуклеотидного состава среди разных видов позвоночных. У человека hFMO1–5 показывают различные тканеспецифичные паттерны экспрессии. Наряду с цитохромами Р450 (CYP), FMO являются самой важной составляющей фазы I биотрансформации ксенобиотиков. FMO и CYP проявляют сходство по тканевому распределению, молекулярной массе, субстратной специфичности. В отличие от CYP, FMO не требуют присутствия субстрата для начала каталитического цикла. Важным отличием FMO от CYP является то, что первый не подвержен ни быстрой индукции, ни ингибированию. Несмотря на перекрывающуюся субстратную специфичность, в результате катализа FMO и CYP образуются различные метаболиты, отличающиеся по токсикологическим и фармакологическим свойствам.
Ключевые слова
Полный текст:
PDFЛитература
Atta-Asafo-Adjei E., Lawton M.P., Philpot R.M. Cloning, sequencing, distribution, and expression in Escherichiacoli of flavin-containing monooxygenase1C1. Evidence for a third gene subfamiliy in rabbits // J. Biol. Chem. 1993. Vol. 268. P. 9681–9689. PMID: 8486656
Cashman J.R. Structural and catalytic properties of the mammalian flavin-containing monooxygenase // Chem Res Toxicol. 1995.Vol. 8 (2). P. 166 -181. doi: 10.1021/tx00044a001
Cashman J.R. The implications of polymorphisms in mammalian flavin-containing monooxygenases in drug discovery and development // Drug Discov Today. 2004; 9(13):574–81. doi: 10.1016/S1359-6446(04)03136-8
Cashman J. R. Some distinctions between flavin-containing and cytochrome P450 monooxygenases // Biochem. Biophys. Res. Communs 2005. Vol. 338. P. 599–604. doi: 10.1016/j.bbrc.2005.08.009.
Cashman J. R. Role of flavin-containing monooxgenase in drug development // Expert Opin. Drug Metab. Toxicol. 2008.Vol. 4(12). P. 1507-1521. doi: 10.1517/17425250802522188.
Cashman J.R., Zhang J. Human flavin-containing monooxygenases // Annu Rev Pharmacol Toxicol. 2006. Vol. 46. P. 65–100. doi: 10.1146/annurev.pharmtox.46.120604.141043.
Cerny M.A., Hanzlik R.P. Cyclopropylamine inactivation of cytochromes P450: role of metabolic intermediate complexes // Arch Biochem Biophys. 2005. Vol. 436. P. 265–275. doi: 10.1016/j.abb.2005.02.020.
Chenprakhon P., Wongnate T., Chaiyen P. Monooxygenation of Aromatic Compounds by Flavin-Dependent Monooxygenases // Protein Sci. 2019. Vol. 28(1). P. 8-29. doi: 10.1002/pro.3525.
Cherrington N.J., Cao Y., Cherrington J.W., Rose R.L., Hodgson E. Physiological factors affecting protein expression of flavin-containing monooxygenases 1,3, and 5 // Xenobiotica. 1998. Vol. 28. P. 673–682. doi: 10.1080/004982598239254.
Choi H. S., Kim J. K., Vho E. H., Kim Y. C., KimJ. I., KimS. W. A. novel flavin-containing monooxygenase from Methylophaga sp strain SK1 and its indigo synthesis in Escherichia coli // Biochem. Biophys. Res. Commun. 2003. Vol. 306, P. 930–936. doi: 10.1016/s0006-291x(03)01087-8
Decker C.J.; Doerge D.R., Cashman, J.R. Metabolism of benzimidazoline-2-thiones by rat hepatic microsomes and hog liver flavin-containing monooxygenase // Chem. Res. Toxicol. 1992. Vol. 5. P. 726- 733. doi: 10.1021/tx00029a021.
Eswaramoorthy S., Bonanno J. B., Burley S. K, Swaminathan S. Mechanism of action of a flavin containing monooxygenase // PNAS, 2006. vol. 103( 26). P. 9832–9837. doi: 10.1073/pnas.0602398103.
Falls J. G., Blake B. L., Cao Y., Levi P. E., Hodgson E. Gender differences in hepatic expression of flavin-containing monooxygenase isoforms (FMO1, FMO3, and FMO5) in mice // J. Biochem. Toxicol. 1995. Vol. 10. P. 171–177. doi: 10.1002/jbt.2570100308.
Fiorentini F., Geier M., Binda C., Winkler M., Faber K., Hall M., Mattevi A. Biocatalytic Characterization of Human FMO5: Unearthing Baeyer−Villiger Reactions in Humans // ACS Chem Biol. 2016. Vol. 11(4). P. 1039-1048. doi: 10.1021/acschembio.5b01016
Fraaije M. W., Kamerbeek N. M., van-Berkel W. J. J., Janssen D. B. Identification of a Baeyer-Villiger monooxygenase sequence motif // FEBS Lett. 2002. Vol. 518. P. 43–47. doi: 10.1016/s0014-5793(02)02623-6
Guengerich F.P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity // Chem Res Toxicol. 2001. Vol.14. P. 611–650. doi: 10.1021/tx0002583.
Gut I., Conney A. H. Trimethylamine N-oxygenation and N-demethylation in rat liver microsomes // Biochem. Pharmacol. 1993. Vol. 46. P. 239–244. doi: 10.1016/0006-2952(93)90409-p.
Hao D. C., Chen S. L., Mu J., Xiao P. G. Molecular phylogeny, long-term evolution, and functional divergence of flavin-containing monooxygenases // Genetica. 2009. Vol. 137. P. 173–187. doi: 10.1007/s10709-009-9382-y.
Henderson M. C., Krueger S. K., Stevens J. F., Williams D. E. Human flavin-containing monooxygenase form 2 S-oxygenation: sulfenic acid formation from thioureas and oxidation of glutathione // Chem. Res. Toxicol. 2004. Vol. 17. P. 633–640. doi: 10.1021/tx034253s.
Hernandez D., Janmohamed A., Chandan P., Phillips I.R., Shephard E.A. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters // Pharmacogenetics. 2004. Vol. 14 (2). P. 117 -130. doi: 10.1097/00008571-200402000-00006.
Hines R.N., Cashman J.R., Philpot R.M. Williams D.E., Ziegler D.M. The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression // Toxicol. Appl. Pharmacol. 1994. Vol. 125. P. 1-6. doi: 10.1006/taap.1994.1042
Hines R. N., Hopp K. A., Franco J., Saeian K., Begun F. P. Alternative processing of the human FMO6 gene renders transcripts incapable of encoding a functional flavin-containing monooxygenase // Mol. Pharmacol. 2002. Vol. 62. P. 320–325. doi: 10.1124/mol.62.2.320.
Huijbers M. M. E., Montersino S., Westphal A. H., Tischler D., Van Berkel W. J. H. Flavin dependent monooxygenases // Arch. Biochem. Biophys. 2014. Vol. 544. P. 2–17. doi: 10.1016/j.abb.2013.12.005.
Jeitner T.M., Lawrence D.A. Mechanisms for the cytotoxicity of cysteamine // Toxicol Sci. 2001. Vol. 63. P. 57–64. doi: 10.1093/toxsci/63.1.57.
Jones K.C., Ballou D.P. Reactions of the 4a-hydroperoxide of liver microsomal flavin-containing monooxygenase with nucleophilic and electrophilic substrates // J Biol Chem. 1986. Vol. 261. P. 2553–2559. PMID: 3949735.
Kedderis G.L, Rickert D.E. Loss of rat liver microsomal cytochrome P-450 during methimazole metabolism. Role of flavin-containing monooxygenase // Drug Metab Dispos. 1985. Vol.13. P. 58–61. PMID: 2858378
Koukouritaki S.B, Simpson P., Yeung C.K., Rettie A.E., Hines R.N. Human hepatic flavin-containing monooxygenase 1 (FMO1) and 3 (FMO3) development expression // Pediatric Res 2002.Vol. 51 (2). P. 236 -243. doi: 10.1203/00006450-200202000-00018.
Kousba A., Soll R., Yee S., Martin M. Cyclic conversion of the novel Src kinase inhibitor [7-(2,6-dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine (TG100435) and Its N-oxide metabolite by flavin-containing monooxygenases and cytochrome P450 reductase // Drug Metab Dispos. 2007. Vol. 35(12). P. 2242-2251. doi: 10.1124/dmd.107.017384
Krueger S. K., Williams D. E. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism // Pharmacol. Ther. 2005. Vol. 106. P. 357–387. doi: 10.1016/j.pharmthera.2005.01.001.
Lacroix D., Sonnier M., Moncion A., Cheron G., Cresteil T. Expression of CYP3A in the human liver. Evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth // Eur J Biochem 1997.Vol. 247. P. 625–634. doi: 10.1111/j.1432-1033.1997.00625.x.
Lang D. H., Yeung C. K., Peter R. M., Ibarra C., Gasser R., Itagaki K., Philpot R. M., Rettie A. E. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3 // Biochem. Pharmacol. 1998. Vol. 56. P 1005–1012. doi: 10.1016/s0006-2952(98)00218-4.
Lang D.H., Rettie A.E. In vitro evaluation of potential in vivo probes for human flavin-containing monooxygenase (FMO): metabolism of benzydamine and caffeine by FMO and P450 isoforms // Br. J. Clin. Pharmacol. 2000. Vol. 50. P. 311–314. doi: 10.1046/j.1365-2125.2000.00265.x.
Larsen-Su S., Krueger S.K., Yueh M.F., Lee M.Y., Shehin S.E., Hines R.N., Williams D.E. Flavin-containing monooxygenase isoform 2: developmental expression in fetal and neonatal rabbit lung // J. Biochem. Mol. Toxicol. 1999. Vol. 13. P. 187–193. doi: 10.1002/(sici)1099-0461(1999)13:3/4<187::aid-jbt9>3.0.co;2-6.
Lawton M.P., Philpot RM. Functional characterization of flavin-containing monooxygenase 1B1 expressed in Saccharomyces cerevisiae and Escherichia coli and analysis of proposed FAD and membrane-binding domains // J. Biol.Chem. 1993. Vol. 268. P. 5728–5734. PMID: 8449936.
Lawton M.P., Cashman J.R., Cresteil T., Dolphin C., Elfarra A., Hine R.N., Hodgson E., Kimura T., Ozols J., Phillips I., Philpot R.M., Poulsen L.L., Rettie A.E., Williams D.E, Ziegler D.M. A nomenclature for the mammalian flavin-containing monooxygenase gene family based on amino acid sequence identities // Arch. Biochem. Biophys. 1994. Vol. 308. P. 254-257. doi: 10.1006/abbi.1994.1035.
Leoni C., Buratti F. M., Testai E. The participation of human hepatic P450 isoforms, flavin-containing mono-oxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion // Toxicol. Appl. Pharmacol. 2008. Vol. 233. P. 343−352. doi:10.1016/j.taap.2008.09.004.
Lin J., Cashman J.R. Detoxication of tyramine by the flavin-containing monooxygenase: stereoselective formation of the trans oxime // Chem Res Toxicol. 1997. Vol. 10. P. 842–852. doi: 10.1021/tx970030o.
Mascotti M. L., Lapadula W. J., Juri Ayub M. The origin and evolution of Baeyer–Villiger monooxygenases (BVMOs): an ancestral family of flavin monooxygenases // PLoS ONE. 2015. Vol.10. e0132689 2. doi: 10.1371/journal.pone.0132689. eCollection 2015.
Mascotti M. L., Juri Ayub M., Furnham N., Thornton J. M., Laskowski R. A. Chopping and changing: the evolution of the flavin dependent monooxygenases // J. Mol. Biol. 2016. Vol. 428. P. 3131–3146. doi: 10.1016/j.jmb.2016.07.003.
Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., Hanada A., Yaeno T., Shirasu K., Yao H., McSteen P., Zhao Y., Hayashi K., Kamiya Y., Kasahara H. The main auxin biosynthesis pathway in Arabidopsis // Proc. Natl. Acad. Sci. 2011. Vol. 108, P. 18512–18517. doi: 10.1073/pnas.1108434108.
Massey V. Activation of molecular oxygen by flavins and flavoproteins // J Biol Chem. 1994. Vol. 269(36). P. 22459-22462. PMID: 8077188
Mitchell S.C. Flavin Mono-Oxygenase (FMO) - The ‘Other’ Oxidase // Current Drug Metabolism. 2008. Vol. 9. P. 280-284. doi: 10.2174/138920008784220682.
Mitchell S. C., Smith R. L. A physiological role for flavin-containing monooxygenase (FMO3) in humans // Xenobiotica. 2010. Vol. 40(5). P. 301–305. doi: 10.3109/00498251003702753
Ohmi N., Yoshida, H., Endo H., Hasegawa M., Akimoto M., Higuchi S. S-oxidation of S-methyl-esonarimod by flavin-containing mono-oxygenases in human liver microsomes // Xenobiotica. 2003. Vol. 33. Р. 1221−1231. doi: 10.1080/00498250310001624627.
Overby L.H., Buckpitt A.R., Lawton M.P., Atta-Asafo-Adjei E., Schulze J., Philpot R.M. Characterization of flavin-containing monooxygenase 5 (FMO5) cloned from human and guinea pig: evidence that the unique catalytic properties of FMO5 are not confined to the rabbit ortholog // Arch Biochem Biophys. 1995. Vol. 317(1). P. 275-284. doi: 10.1006/abbi.1995.1163.
Phillips I. R., Dolphin C. T., Clair P., Hadley M. R., Hut A. J., McCombie J. R. R., Smith R. L., Shephard E. A. The molecular biology of the flavin-containing monooxygenases of man // Chem. Biol. Interact. 1995. Vol. 96. P. 17–32. doi: 10.1016/0009-2797(94)03580-2.
Phillips I. R., Shephard E. A. Drug metabolism by flavin-containing monooxygenases of human and mouse // Expert Opin Drug Metab Toxicol. 2017. Vol. 13(2). P. 167-181. doi: 10.1080/17425255.2017.1239718.
Rendic S, Guengerich FP. Survey of human oxidoreductases andcytochrome P450 enzymes involved in the metabolism of xenobioticand natural chemicals // Chem Res Toxicol. 2015. Vol.28. P.38–42. doi: 10.1021/tx500444e
Schupke H., Hempel R., Peter G., Hermann R., Wessel K., Engel J., Kronbach T. New metabolic pathways of α-lipoic acid // Drug Metab Dispos. 2001. Vol. 29. P. 855–862. PMID: 11353754.
Siddens L. K., Krueger S. K., Henderson M. C., Williams D. E. Mammalian flavin-containing monooxygenase (FMO) as a source of hydrogen peroxide // Biochem. Pharmacol. 2014. Vol. 89. P. 141–147. doi: 10.1016/j.bcp.2014.02.006.
Suh J. K., Poulsen L. L., Ziegler D. M., Robertus J. D. Molecular cloning and kinetic characterization of a flavin-containing monooxygenase from Saccharomyces cerevisiae // Arch. Biochem. Biophys. 1996. Vol. 336. P. 268–274. doi: 10.1006/abbi.1996.0557.
Suh J. K., Poulsen L. L., Ziegler D. M., Robertus J. D. Yeast flavin-containing monooxygenase generates oxidizing equivalents that control protein folding in the endoplasmic reticulum // Proc. Natl. Acad. Sci. U.S.A. 1999. Vol. 96. P. 2687–2691. doi: 10.1073/pnas.96.6.2687.
Yang H-Y. L., Lee Q P., Rettie A. E., Juchau M. R. Functional cytochrome P4503A isoforms in human embryonic tissues: expression during organogenesis // Mol. Pharmacol. 1994. Vol. 46. P. 922–928. PMID: 7969081
Zane N. R., Chen Y., Wang M. Z., ThakkerD. R. Cytochrome P450 and flavin-containing monooxygenase families: age-dependent differences in expression and functional activity // Pediatric Researh. 2018. Vol. 83. P. 527-535. doi:10.1038/pr.2017.226
Zhang, J., Cashman, J. R. Quantitative analysis of FMO gene mRNA levels in human tissues// Drug Metab. Dispos. 2006. Vol.34. P. 19–26. doi: 10.1124/dmd.105.006171.
Ziegler D.M., Duffel M.W., Poulsen L.L. Studies on the nature and regulation of the cellular thio:disulphide potential // Ciba Found Symp. 1979. Vol. 72. P. 191–204. doi: 10.1002/9780470720554.ch12.
Ziegler D. M. An overview of the mechanism, substrate specificities, and structure of FMOs // Drug Metab. Rev. 2002. Vol. 34. P. 503–511. doi: 10.1081/dmr-120005650.
References
Atta-Asafo-Adjei E., Lawton M.P., Philpot R.M. Cloning, sequencing, distribution, and expression in Escherichiacoli of flavin-containing monooxygenase1C1. Evidence for a third gene subfamiliy in rabbits // J. Biol. Chem. 1993. Vol. 268. P. 9681–9689. PMID: 8486656
Cashman J.R. Structural and catalytic properties of the mammalian flavin-containing monooxygenase // Chem Res Toxicol. 1995.Vol. 8 (2). P. 166 -181. doi: 10.1021/tx00044a001
Cashman J.R. The implications of polymorphisms in mammalian flavin-containing monooxygenases in drug discovery and development // Drug Discov Today. 2004; 9(13):574–81. doi: 10.1016/S1359-6446(04)03136-8
Cashman J. R. Some distinctions between flavin-containing and cytochrome P450 monooxygenases // Biochem. Biophys. Res. Communs 2005. Vol. 338. P. 599–604. doi: 10.1016/j.bbrc.2005.08.009.
Cashman J. R. Role of flavin-containing monooxgenase in drug development // Expert Opin. Drug Metab. Toxicol. 2008.Vol. 4(12). P. 1507-1521. doi: 10.1517/17425250802522188.
Cashman J.R., Zhang J. Human flavin-containing monooxygenases // Annu Rev Pharmacol Toxicol. 2006. Vol. 46. P. 65–100. doi: 10.1146/annurev.pharmtox.46.120604.141043.
Cerny M.A., Hanzlik R.P. Cyclopropylamine inactivation of cytochromes P450: role of metabolic intermediate complexes // Arch Biochem Biophys. 2005. Vol. 436. P. 265–275. doi: 10.1016/j.abb.2005.02.020.
Chenprakhon P., Wongnate T., Chaiyen P. Monooxygenation of Aromatic Compounds by Flavin-Dependent Monooxygenases // Protein Sci. 2019. Vol. 28(1). P. 8-29. doi: 10.1002/pro.3525.
Cherrington N.J., Cao Y., Cherrington J.W., Rose R.L., Hodgson E. Physiological factors affecting protein expression of flavin-containing monooxygenases 1,3, and 5 // Xenobiotica. 1998. Vol. 28. P. 673–682. doi: 10.1080/004982598239254.
Choi H. S., Kim J. K., Vho E. H., Kim Y. C., KimJ. I., KimS. W. A. novel flavin-containing monooxygenase from Methylophaga sp strain SK1 and its indigo synthesis in Escherichia coli // Biochem. Biophys. Res. Commun. 2003. Vol. 306, P. 930–936. doi: 10.1016/s0006-291x(03)01087-8
Decker C.J.; Doerge D.R., Cashman, J.R. Metabolism of benzimidazoline-2-thiones by rat hepatic microsomes and hog liver flavin-containing monooxygenase // Chem. Res. Toxicol. 1992. Vol. 5. P. 726- 733. doi: 10.1021/tx00029a021.
Eswaramoorthy S., Bonanno J. B., Burley S. K, Swaminathan S. Mechanism of action of a flavin containing monooxygenase // PNAS, 2006. vol. 103( 26). P. 9832–9837. doi: 10.1073/pnas.0602398103.
Falls J. G., Blake B. L., Cao Y., Levi P. E., Hodgson E. Gender differences in hepatic expression of flavin-containing monooxygenase isoforms (FMO1, FMO3, and FMO5) in mice // J. Biochem. Toxicol. 1995. Vol. 10. P. 171–177. doi: 10.1002/jbt.2570100308.
Fiorentini F., Geier M., Binda C., Winkler M., Faber K., Hall M., Mattevi A. Biocatalytic Characterization of Human FMO5: Unearthing Baeyer−Villiger Reactions in Humans // ACS Chem Biol. 2016. Vol. 11(4). P. 1039-1048. doi: 10.1021/acschembio.5b01016
Fraaije M. W., Kamerbeek N. M., van-Berkel W. J. J., Janssen D. B. Identification of a Baeyer-Villiger monooxygenase sequence motif // FEBS Lett. 2002. Vol. 518. P. 43–47. doi: 10.1016/s0014-5793(02)02623-6
Guengerich F.P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity // Chem Res Toxicol. 2001. Vol.14. P. 611–650. doi: 10.1021/tx0002583.
Gut I., Conney A. H. Trimethylamine N-oxygenation and N-demethylation in rat liver microsomes // Biochem. Pharmacol. 1993. Vol. 46. P. 239–244. doi: 10.1016/0006-2952(93)90409-p.
Hao D. C., Chen S. L., Mu J., Xiao P. G. Molecular phylogeny, long-term evolution, and functional divergence of flavin-containing monooxygenases // Genetica. 2009. Vol. 137. P. 173–187. doi: 10.1007/s10709-009-9382-y.
Henderson M. C., Krueger S. K., Stevens J. F., Williams D. E. Human flavin-containing monooxygenase form 2 S-oxygenation: sulfenic acid formation from thioureas and oxidation of glutathione // Chem. Res. Toxicol. 2004. Vol. 17. P. 633–640. doi: 10.1021/tx034253s.
Hernandez D., Janmohamed A., Chandan P., Phillips I.R., Shephard E.A. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters // Pharmacogenetics. 2004. Vol. 14 (2). P. 117 -130. doi: 10.1097/00008571-200402000-00006.
Hines R.N., Cashman J.R., Philpot R.M. Williams D.E., Ziegler D.M. The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression // Toxicol. Appl. Pharmacol. 1994. Vol. 125. P. 1-6. doi: 10.1006/taap.1994.1042
Hines R. N., Hopp K. A., Franco J., Saeian K., Begun F. P. Alternative processing of the human FMO6 gene renders transcripts incapable of encoding a functional flavin-containing monooxygenase // Mol. Pharmacol. 2002. Vol. 62. P. 320–325. doi: 10.1124/mol.62.2.320.
Huijbers M. M. E., Montersino S., Westphal A. H., Tischler D., Van Berkel W. J. H. Flavin dependent monooxygenases // Arch. Biochem. Biophys. 2014. Vol. 544. P. 2–17. doi: 10.1016/j.abb.2013.12.005.
Jeitner T.M., Lawrence D.A. Mechanisms for the cytotoxicity of cysteamine // Toxicol Sci. 2001. Vol. 63. P. 57–64. doi: 10.1093/toxsci/63.1.57.
Jones K.C., Ballou D.P. Reactions of the 4a-hydroperoxide of liver microsomal flavin-containing monooxygenase with nucleophilic and electrophilic substrates // J Biol Chem. 1986. Vol. 261. P. 2553–2559. PMID: 3949735.
Kedderis G.L, Rickert D.E. Loss of rat liver microsomal cytochrome P-450 during methimazole metabolism. Role of flavin-containing monooxygenase // Drug Metab Dispos. 1985. Vol.13. P. 58–61. PMID: 2858378
Koukouritaki S.B, Simpson P., Yeung C.K., Rettie A.E., Hines R.N. Human hepatic flavin-containing monooxygenase 1 (FMO1) and 3 (FMO3) development expression // Pediatric Res 2002.Vol. 51 (2). P. 236 -243. doi: 10.1203/00006450-200202000-00018.
Kousba A., Soll R., Yee S., Martin M. Cyclic conversion of the novel Src kinase inhibitor [7-(2,6-dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine (TG100435) and Its N-oxide metabolite by flavin-containing monooxygenases and cytochrome P450 reductase // Drug Metab Dispos. 2007. Vol. 35(12). P. 2242-2251. doi: 10.1124/dmd.107.017384
Krueger S. K., Williams D. E. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism // Pharmacol. Ther. 2005. Vol. 106. P. 357–387. doi: 10.1016/j.pharmthera.2005.01.001.
Lacroix D., Sonnier M., Moncion A., Cheron G., Cresteil T. Expression of CYP3A in the human liver. Evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth // Eur J Biochem 1997.Vol. 247. P. 625–634. doi: 10.1111/j.1432-1033.1997.00625.x.
Lang D. H., Yeung C. K., Peter R. M., Ibarra C., Gasser R., Itagaki K., Philpot R. M., Rettie A. E. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3 // Biochem. Pharmacol. 1998. Vol. 56. P 1005–1012. doi: 10.1016/s0006-2952(98)00218-4.
Lang D.H., Rettie A.E. In vitro evaluation of potential in vivo probes for human flavin-containing monooxygenase (FMO): metabolism of benzydamine and caffeine by FMO and P450 isoforms // Br. J. Clin. Pharmacol. 2000. Vol. 50. P. 311–314. doi: 10.1046/j.1365-2125.2000.00265.x.
Larsen-Su S., Krueger S.K., Yueh M.F., Lee M.Y., Shehin S.E., Hines R.N., Williams D.E. Flavin-containing monooxygenase isoform 2: developmental expression in fetal and neonatal rabbit lung // J. Biochem. Mol. Toxicol. 1999. Vol. 13. P. 187–193. doi: 10.1002/(sici)1099-0461(1999)13:3/4<187::aid-jbt9>3.0.co;2-6.
Lawton M.P., Philpot RM. Functional characterization of flavin-containing monooxygenase 1B1 expressed in Saccharomyces cerevisiae and Escherichia coli and analysis of proposed FAD and membrane-binding domains // J. Biol.Chem. 1993. Vol. 268. P. 5728–5734. PMID: 8449936.
Lawton M.P., Cashman J.R., Cresteil T., Dolphin C., Elfarra A., Hine R.N., Hodgson E., Kimura T., Ozols J., Phillips I., Philpot R.M., Poulsen L.L., Rettie A.E., Williams D.E, Ziegler D.M. A nomenclature for the mammalian flavin-containing monooxygenase gene family based on amino acid sequence identities // Arch. Biochem. Biophys. 1994. Vol. 308. P. 254-257. doi: 10.1006/abbi.1994.1035.
Leoni C., Buratti F. M., Testai E. The participation of human hepatic P450 isoforms, flavin-containing mono-oxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion // Toxicol. Appl. Pharmacol. 2008. Vol. 233. P. 343−352. doi:10.1016/j.taap.2008.09.004.
Lin J., Cashman J.R. Detoxication of tyramine by the flavin-containing monooxygenase: stereoselective formation of the trans oxime // Chem Res Toxicol. 1997. Vol. 10. P. 842–852. doi: 10.1021/tx970030o.
Mascotti M. L., Lapadula W. J., Juri Ayub M. The origin and evolution of Baeyer–Villiger monooxygenases (BVMOs): an ancestral family of flavin monooxygenases // PLoS ONE. 2015. Vol.10. e0132689 2. doi: 10.1371/journal.pone.0132689. eCollection 2015.
Mascotti M. L., Juri Ayub M., Furnham N., Thornton J. M., Laskowski R. A. Chopping and changing: the evolution of the flavin dependent monooxygenases // J. Mol. Biol. 2016. Vol. 428. P. 3131–3146. doi: 10.1016/j.jmb.2016.07.003.
Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., Hanada A., Yaeno T., Shirasu K., Yao H., McSteen P., Zhao Y., Hayashi K., Kamiya Y., Kasahara H. The main auxin biosynthesis pathway in Arabidopsis // Proc. Natl. Acad. Sci. 2011. Vol. 108, P. 18512–18517. doi: 10.1073/pnas.1108434108.
Massey V. Activation of molecular oxygen by flavins and flavoproteins // J Biol Chem. 1994. Vol. 269(36). P. 22459-22462. PMID: 8077188
Mitchell S.C. Flavin Mono-Oxygenase (FMO) - The ‘Other’ Oxidase // Current Drug Metabolism. 2008. Vol. 9. P. 280-284. doi: 10.2174/138920008784220682.
Mitchell S. C., Smith R. L. A physiological role for flavin-containing monooxygenase (FMO3) in humans // Xenobiotica. 2010. Vol. 40(5). P. 301–305. doi: 10.3109/00498251003702753
Ohmi N., Yoshida, H., Endo H., Hasegawa M., Akimoto M., Higuchi S. S-oxidation of S-methyl-esonarimod by flavin-containing mono-oxygenases in human liver microsomes // Xenobiotica. 2003. Vol. 33. Р. 1221−1231. doi: 10.1080/00498250310001624627.
Overby L.H., Buckpitt A.R., Lawton M.P., Atta-Asafo-Adjei E., Schulze J., Philpot R.M. Characterization of flavin-containing monooxygenase 5 (FMO5) cloned from human and guinea pig: evidence that the unique catalytic properties of FMO5 are not confined to the rabbit ortholog // Arch Biochem Biophys. 1995. Vol. 317(1). P. 275-284. doi: 10.1006/abbi.1995.1163.
Phillips I. R., Dolphin C. T., Clair P., Hadley M. R., Hut A. J., McCombie J. R. R., Smith R. L., Shephard E. A. The molecular biology of the flavin-containing monooxygenases of man // Chem. Biol. Interact. 1995. Vol. 96. P. 17–32. doi: 10.1016/0009-2797(94)03580-2.
Phillips I. R., Shephard E. A. Drug metabolism by flavin-containing monooxygenases of human and mouse // Expert Opin Drug Metab Toxicol. 2017. Vol. 13(2). P. 167-181. doi: 10.1080/17425255.2017.1239718.
Rendic S, Guengerich FP. Survey of human oxidoreductases andcytochrome P450 enzymes involved in the metabolism of xenobioticand natural chemicals // Chem Res Toxicol. 2015. Vol.28. P.38–42. doi: 10.1021/tx500444e
Schupke H., Hempel R., Peter G., Hermann R., Wessel K., Engel J., Kronbach T. New metabolic pathways of α-lipoic acid // Drug Metab Dispos. 2001. Vol. 29. P. 855–862. PMID: 11353754.
Siddens L. K., Krueger S. K., Henderson M. C., Williams D. E. Mammalian flavin-containing monooxygenase (FMO) as a source of hydrogen peroxide // Biochem. Pharmacol. 2014. Vol. 89. P. 141–147. doi: 10.1016/j.bcp.2014.02.006.
Suh J. K., Poulsen L. L., Ziegler D. M., Robertus J. D. Molecular cloning and kinetic characterization of a flavin-containing monooxygenase from Saccharomyces cerevisiae // Arch. Biochem. Biophys. 1996. Vol. 336. P. 268–274. doi: 10.1006/abbi.1996.0557.
Suh J. K., Poulsen L. L., Ziegler D. M., Robertus J. D. Yeast flavin-containing monooxygenase generates oxidizing equivalents that control protein folding in the endoplasmic reticulum // Proc. Natl. Acad. Sci. U.S.A. 1999. Vol. 96. P. 2687–2691. doi: 10.1073/pnas.96.6.2687.
Yang H-Y. L., Lee Q P., Rettie A. E., Juchau M. R. Functional cytochrome P4503A isoforms in human embryonic tissues: expression during organogenesis // Mol. Pharmacol. 1994. Vol. 46. P. 922–928. PMID: 7969081
Zane N. R., Chen Y., Wang M. Z., ThakkerD. R. Cytochrome P450 and flavin-containing monooxygenase families: age-dependent differences in expression and functional activity // Pediatric Researh. 2018. Vol. 83. P. 527-535. doi:10.1038/pr.2017.226
Zhang, J., Cashman, J. R. Quantitative analysis of FMO gene mRNA levels in human tissues// Drug Metab. Dispos. 2006. Vol.34. P. 19–26. doi: 10.1124/dmd.105.006171.
Ziegler D.M., Duffel M.W., Poulsen L.L. Studies on the nature and regulation of the cellular thio:disulphide potential // Ciba Found Symp. 1979. Vol. 72. P. 191–204. doi: 10.1002/9780470720554.ch12.
Ziegler D. M. An overview of the mechanism, substrate specificities, and structure of FMOs // Drug Metab. Rev. 2002. Vol. 34. P. 503–511. doi: 10.1081/dmr-120005650.
DOI: http://dx.doi.org/10.17076/eb1285
Ссылки
- На текущий момент ссылки отсутствуют.
© Труды КарНЦ РАН, 2014-2019