Сопряженность конформационных и фазовых состояний сывороточного альбумина в солевых растворах по данным метода ЭПР спиновых меток

Сергей Павлович Рожков, Андрей Сергеевич Горюнов, Марина Юрьевна Крупнова, Sergey Rozhkov, Andrey Goryunov, Marina Krupnova

Аннотация


Использование сывороточных альбуминов (СА) в модельных системах при исследовании биологической активности химических соединений и наноматериалов, а также физико-химических, в частности, фазовых свойств биологических жидкостей, в том числе нуклеоплазмы и цитоплазмы живой клетки, требует более глубоких представлений о взаимосвязи конформационных (структурно-динамических) состояний белковых молекул с фазовыми состояниями белковых дисперсий в широком диапазоне температур и составов. Обычно используемые при изучении этой взаимосвязи совместное построение и анализ кривой стабильности белка и фазовых диаграмм белкового раствора существенно осложнены в случае сывороточного альбумина повышенной склонностью этого белка к агрегации. В настоящей работе для этих целей предлагается экспериментально-теоретический подход, основанный на применении электронного парамагнитного резонанса (ЭПР) спиновых меток (малеимидо-ТЕМПО и дихлортриазин-ТЕМПО), ковалентно связанных с молекулой белка и чувствительных к изменению как структурно-динамического состояния белковых молекул, так и фазового состояния белковых растворов (дисперсий). Представлены данные о характеристиках подвижности спин-меток (времени корреляции, термодинамических функциях, константе равновесия), отражающих состояние внутри- и межмолекулярных взаимодействий молекул СА человека. Показано, что переходы на температурных зависимостях этих характеристик от температуры и концентрации NaCl, CaCl2, (NH4)2SO4, сахарозы, полиэтиленгликоля и тяжелой воды отражают взаимопревращения низко- и высокотемпературного конформеров белка и их агрегатов, а также фазовые переходы типа жидкость-жидкость, в том числе реентрантные. На основе полученных результатов предложена фазовая диаграмма дисперсии СА, описывающая фазовые переходы типа жидкость-жидкость вблизи температур холодовой и тепловой денатурации с учетом роли нативных конформеров белка, их агрегатов и переходов между ними в области физиологических температур.

Ключевые слова


белковый раствор; электронный парамагнитный резонанс; взаимодействия белков с низко- и высокомолекулярными веществами; фазовая диаграмма

Полный текст:

PDF

Литература


Бондарев Г. Н., Исаев-Иванов В. В., Исаева-Иванова Л. С. и др. Распределение спиновой метки темподихлортриазина по молекуле иммуноглобулина // Биофизика. 1988. Т. 33, № 2. С. 212-215.

Вассерман А. М., Коварский А. Л. Спиновые метки и зонды в физикохимии полимеров. М.: Наука, 1986. 246 с.

Герасимов Я. И. и др. (ред.) Курс физической химии. Т. 2. М.: Химия, 1973. 614 с.

Жданов Р. И. Парамагнитные модели биологически активных соединений. М.: Наука, 1981. 280 с.

Кузнецов А. Н. Метод спинового зонда (основы и применение). М.: Наука, 1976. 210 с.

Кяйвяряйнен А. И. Раздельное определение собственных времен корреляции спин-меченых белков и связанных с ними меток // Молекуляр. биология. 1975. Т.9, № 6. С. 805-811.

Ландау М. А. Молекулярные механизмы действия физиологически активных соединений. М.: Наука, 1981. 262 с.

Лихтенштейн Г. И. Метод спиновых меток в молекулярной биологии. М.: Наука, 1974. 256 с.

Пул Ч. Техника ЭПР-спектроскопии. М.: Мир, 1970. 558 с.

Рожков С. П. Изучение гибкости некоторых белков крови методом спиновой метки: Автореф. дис. … канд. биол. наук. Купавна, 1984. 23 с.

Рожков С. П. Стабилизация белка сахарозой по данным метода спиновой метки // Биофизика. 1991. Т. 36, № 4. С. 571-576.

Рожков С. П. Стабилизация альбумина CaCl2 и MgCl2 регулируемым взаимодействием макромолекул: исследование методом спиновой метки // Биофизика. 1997. Т. 42, № 5. С. 1020-1028.

Рожков С. П., Горюнов А. С. Определение удельной поверхностной энергии гидратной оболочки белка методом ЭПР с использованием спиновой метки // Биофизика. 2006. Т. 51, № 2. С. 236-241. https://doi.org/10.1134/S0006350906020060.

Рожков С. П., Горюнов А. С. Стабильные, метастабильные и закритическая фазы в растворах глобулярных белков между верхней и нижней температурами их денатурации // Биофизика. 2017. Т. 62, № 4. С. 665-673. https://doi.org/10.1134/S0006350917040182.

Рожков С. П., Горюнов А. С. Фазовые свойства белковых растворов и денатурация белка // Труды КарНЦ РАН. Сер. Экспериментальная биология. 2019. № 6. С. 5-15. https://doi.org/10.17076/eb1031.

Рожков С. П., Кяйвяряйнен А. И. Изучение гибкости молекул сывороточного альбумина методом спиновой метки // Биофизика. 1985. Т. 30, № 5. С. 772-776.

Adachi M., So M., Sakurai K. et al. Supersaturation-limited and Unlimited Phase Transitions Compete to Produce the Pathway Complexity in Amyloid Fibrillation // J. Biol. Chem. 2015. Vol. 290, no. 29. P. 18134–18145. https://doi.org/10.1074/jbc.M115.648139.

Alfano C., Sanfelice D., Martin S. R. et al. An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states // Nat. Commun. 2017. Vol. 8. P. 15428. https://doi.org/10.1038/ncomms15428.

Arakawa T., Timasheff S .N. Stabilization of protein structure by sugars // Biochemistry. 1982. Vol. 21. P. 6536-6544. https://doi.org/10.1021/bi00268a033.

Auer S., Ricchiuto P., Kashchiev D. Two-step nucleation of amyloid fibrils: omnipresent or not? // J. Mol. Biol. 2012. Vol. 422, no. 5. P. 723–730. https://doi.org/10.1016/j.jmb.2012.06.022.

Aznauryan M., Nettels D., Holla A. et al. Single-Molecule Spectroscopy of Cold Denaturation and the Temperature-Induced Collapse of Unfolded Proteins // J. Am. Chem. Soc. 2013. Vol. 135, no. 38. P. 14040−14043. https://doi.org/10.1021/ja407009w.

Bian L., Wu D., Hu W. Temperature-induced conformational transition of bovine serum albumin in neutral aqueous solution by reversed-phase liquid chromatography // Biomed. Chromatogr. 2014. Vol. 28. P. 295–301. https://doi.org/10.1002/bmc.3020.

Borzova V. A., Markossian K. A., Chebotareva N. A. et al. Kinetics of thermal denaturation and aggregation of bovine serum albumin // PLoS One. 2016. Vol. 11, no. 4:e0153495. doi:10.1371/journal.pone.0153495.

Braun M. K., Wolf M., Matsarskaia O. et al. Strong isotope effects on effective interactions and phase behavior in protein solutions in the presence of multivalent ions // J. Phys. Chem. B. 2017. Vol. 121, no. 7. P. 1731−1739. https://doi.org/10.1021/acs.jpcb.6b12814.

Buell A. K. The nucleation of protein aggregates - from crystals to amyloid fibrils // Int. Rev. Cell. Mol. Biol. 2017. Vol. 329. P. 187-226. https://doi.org/10.1016/bs.ircmb.2016.08.014.

Dumetz A. C., Chockla A. M., Kaler E. W. et al. Protein phase behavior in aqueous solutions: crystallization, liquid–liquid phase separation, gels, and aggregates // Biophys. J. 2008. Vol. 94, no. 2. P. 570–583. https://doi.org/10.1529/biophysj.107.116152.

Fullerton G. D., Kanal K. M., Cameron I. L. Osmotically unresponsive water fraction on proteins: Non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration // Cell Biol. Int. 2006. Vol. 30, no. 1. P. 86-92. https://doi.org/10.1016/j.cellbi.2005.11.001.

Grigsby J. J., Blanch H. W., Prausnitz J. M. Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH // Biophys. Chem. 2001. Vol. 91, no. 3. P. 231-243. https://doi.org/10.1016/s0301-4622(01)00173-9.

Iosin M., Canpean V., Astilean S. Spectroscopic studies on pH- and thermally induced сonformational changes of Bovine Serum Albumin adsorbed onto gold nanoparticles // J. Photochem. Photobiol. A: Chem. 2011. Vol. 217, no. 2-3. P. 395–401. https://doi.org/10.1016/j.jphotochem.2010.11.012

Juarez J., Lopez S. G., Cambon A. et al. Influence of electrostatic interactions on the fibrillation process of human serum albumin // J. Phys. Chem. B. 2009. Vol. 113, no. 30. P. 10521-10529. https://doi.org/10.1021/jp902224d.

Juarez J., Taboada P., Goy-Lopez S. et al. Additional supra-self assembly of human serum albumin under amyloid-like forming solution conditions // J. Phys. Chem. B. 2009. Vol. 113, no. 36. P. 12391- 12399. https://doi.org/10.1021/jp904167e.

Li D., Zhang W., Yu X. et al. When biomolecules meet graphene: from molecule-level interactions to material design and applications // Nanoscale. 2016. Vol. 8, no. 47. P. 19491-19509. https://doi.org/10.1039/C6NR07249F.

Ma L., Cui Q. Temperature dependence of salt-protein association is sequence specific // Biochemistry. 2006. Vol. 45, no. 48. P. 14466–14472. doi:10.1021/bi0613067.

Matsarskaia O., Braun M. K.,F. Roosen-Runge, M. et al. Cation-Induced Hydration Effects Cause Lower Critical Solution Temperature Behavior in Protein Solutions. J. Phys. Chem. B. 2016. Vol. 120, no. 31. P. 7731−7736. https://doi.org/10.1021/acs.jpcb.6b04506.

Matsarskaia O., Roosen-Runge F., Lotze G. et al. Tuning phase transitions of aqueous protein solutions by multivalent cations // Phys. Chem. Chem. Phys. 2018. Vol. 20, no. 42. P. 27214-27225 https://doi.org/10.1039/c8cp05884a.

Miti T., Mulaj M., Schmit J. D. et al. Stable, metastable and kinetically trapped amyloid aggregate phases // Biomacromolecules. 2015. Vol. 16, no. 1. P. 326-335. https://doi.org/10.1021/bm501521r.

Pavićević A., Luo J., Popović‑Bijelić A et al. Maleimido-proxyl as an EPR spin label for the evaluation of conformational changes of albumin // Eur. Biophys. J. 2017. Vol. 46, no. 8. P. 773-787. https://doi.org/10.1007/s00249-017-1257-z.

Peters Th., Jr. All about albumin: biochemistry, genetics and medical applications. San Diego, СA, Academic Press, Inc., 1996.

Reslan M., Kayser V. The effect of deuterium oxide on the conformational stability and aggregation of bovine serum albumin // Pharm. Dev. Technol. 2016. Vol. 23, no. 10. P. 1030-1036. https://doi.org/10.1080/10837450.2016.1268157

Rezaei T. M., Moghaddamnia S. H., Ranjbar B. et al. Conformational study of human serum albumin in pre-denaturation temperatures by differential scanning calorimetry, circular dichroism and UV spectroscopy // J. Biochem. Mol. Biol. 2006. Vol. 39, no.5. P. 530-536. https://doi.org/10.5483/BMBRep.2006.39.5.530

Royer C., Winter R. Protein hydration and volumetric properties // Curr. Opin. Colloid Interface Sci. 2011. Vol. 16, no. 6. P. 568–571. https://doi.org/10.1016/j.cocis.2011.04.008.

Rozhkov S. P. Phase transitions and precrystallization processes in a water-protein-electrolyte system // J. Cryst. Growth. 2004. Vol. 273, no. 1-2. P. 266-279. https://doi.org/https://doi.org/10.1016/j.jcrysgro.2004.08.021.

Rozhkov S. P., Goryunov A. S. Effects of inorganic salts on the structural heterogeneity of serum albumin solutions // Eur. Biophys. J. 2000. Vol. 28, no. 8. P. 639-647. https://doi.org/10.1007/s002490050004.

Rozhkov S. P., Goryunov A. S. Thermodynamic study of protein phases formation and clustering in model water-protein-salt solutions // Biophys. Chem. 2010. Vol. 151, no. 1-2. P. 22-28. https://doi.org/10.1016/j.bpc.2010.04.007.

Rozhkov S. P., Goryunov A. S. Dynamic protein clusterization in supercritical region of the phase diagram of water-protein-salt solutions // J. Supercrit. Fluid. 2014. Vol. 95. P. 68-74. https://doi.org/10.1016/j.supflu.2014.07.028.

Rozhkov S. P., Goryunov A. S. Stable, Metastable, and Supercritical Phases in Solutions of Globular Proteins between Upper and Lower Denaturation Temperatures // Biophysics. 2017. Vol. 62, no. 4. P. 539–546. https://doi.org/10.1134/S0006350917040182.

Sanfelice D., Temussi P. A. Cold denaturation as a tool to measure protein stability // Biophys. Chem. 2016. Vol. 208. P. 4–8. https://doi.org/10.1016/j.bpc.2015.05.007.

Senske M., Constantinescu-Aruxandei D., Havenith M. et al. The temperature dependence of the Hofmeister series: thermodynamic fingerprints of cosolute–protein interactions // Phys. Chem. Chem. Phys. 2016. Vol. 18, no. 43. P. 29698-29708. https://doi.org/10.1039/c6cp05080h.

Shin Y., Brangwynne C. P. Liquid phase condensation in cell physiology and disease. Science. 2017. Vol. 357, no. 6357. pii: eaaf4382. https://doi.org/10.1126/science.aaf4382.

Smeller L. Pressure temperature phase diagrams of biomolecules // Biochim. Biophys. Acta. 2002. Vol.1595, no. 1-2. P. 11-29. https://doi.org/10.1016/s0167-4838(01)00332-6.

Treuel L., Brandholt S., Maffre P. et al. Impact of protein modification on the protein corona on nanoparticles and nanoparticle cell interactions // ACS Nano. 2014. Vol. 8, no. 1. P. 503-513. https://doi.org/10.1021/nn405019v.

Uversky V. N., Li J., Fink A. L. Metal-triggered structural transformations, aggregation, and fibrillation of human-Synuclein. J. Biol. Chem. 2001. Vol. 276, no. 47. P. 44284–44296. https://doi.org/10.1074/jbc.M105343200.

Vekilov P. G. Phase diagrams and kinetics of phase transitions in protein solutions // J. Phys. Condens. Matter. 2012. Vol. 24, no. 19. P. 193101. https://doi.org/10.1088/0953-8984/24/19/193101.

Wang Y., Annunziata O. Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition // J. Phys. Chem. B. 2006. Vol. 111. no. 5. P. 1222-1230. https://doi.org/10.1021/jp065608u.

Wang Y., Latypov R. F., Lomakin A. et al. Quantitative Evaluation of Colloidal Stability of Antibody Solutions using PEG-Induced Liquid−Liquid Phase Separation // Mol. Pharmaceutics. 2014. Vol. 11, no. 5. P. 1391−1402. https://doi.org/10.1021/mp400521b.

Wetzel R., Becker M., Behlke J. et al. Temperature behaviour of human serum albumin // Eur. J. Biochem. 1980. Vol. 104. P. 469-478. https://doi.org/10.1111/j.1432-1033.1980.tb04449.x.

Zaman M., Ahmad E., Qadeer A. et al. Nanoparticles in relation to peptide and protein aggregation // Int. J. Nanomedicine. 2014. Vol. 9. P. 899–912. https://doi.org/10.2147/IJN.S54171.

Zhang F., Skoda M.W.A., Jacobs R.M.J. et al. Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions // J. Phys. Chem. B. 2006. Vol. 111, no. 1. P. 251-259. https://doi.org/10.1021/jp0649955.

Zhang F., Weggler S., Ziller M. J. et al. Universality of protein reentrant condensation in solution induced by multivalent metal ions // Proteins. 2010. Vol. 78, no. 16. P. 3450–3457. https://doi.org/10.1002/prot.22852.

References in English

Bondarev G. N., Isaev-Ivanov V. V., Isaeva-Ivanova L. S., Kleiner A. C., Krasotskaya G. I., Fomichev V. N., Nezlin P. C., Krymov V. N., Oranskii L. G., Bakhmatskii V. D. Raspredelenie spinovoi metki tempodikhlortriazina po molekule immunoglobulina [Distribution of the tempodichlorotriazine spin label in the immunoglobulin molecule]. Biofizika [Biophysics]. 1988. Vol. 33, no. 2. P. 212–215.

Gerasimov Ya. I., Dreving V. P., Eremin E. N., Kiselev A. V., Lebedev V. P., Panchenkov G. M., Shlygin A. I. Kurs fizicheskoi khimii [A course of physical chemistry]. Vol. 2. Moscow: Khimiya, 1973. 614 p.

Kuznetsov A. N. Metod spinovogo zonda (osnovy i primenenie) [Spin probe method (basics and application)]. Moscow: Nauka, 1976. 209 p.

Käiväräinen A. I. Razdel’noe opredelenie sobstvennykh vremen korrelyatsii spin-mechenykh belkov i svyazannykh s nimi metok [Separate determination of inherent correlation times for spin-labeled proteins and labels coupled to them]. Molekulyar. biol. [Molecular Biol.] 1975. Vol. 9, no. 6. P. 805–811.

Landau M. A. Molekulyarnye mekhanizmy deistviya fiziologicheski aktivnykh soedinenii [Molecular mechanisms of physiologically active compounds action]. Moscow: Nauka, 1981. 262 p.

Likhtenstein G. I. Spin-labeling methods in molecular biology. London: John Wiley and Sons Ltd., 1976. 258 p.

Poole C. P. Electron spin resonance: a comprehensive treatise on experimental techniques. N. Y. e. a.: Inrescience Publ., 1967. 810 p.

Rozhkov S. P. Izuchenie gibkosti nekotorykh belkov krovi metodom spinovoi metki [The study of the flexibility of some blood proteins by the spin label method]: Summary of PhD (Cand. of Biol.) thesis. Kupavna, 1984. 23 p.

Rozhkov S. P. Stabilization of protein by sucrose as shown by the spin label method. Biophysics. 1991. Vol. 36, no. 4. P. 565–570.

Rozhkov S. P. Stabilizatsiya al’bumina CaCl2 i MgCl2 reguliruemym vzaimodeistviem makromolekul: issledovanie

metodom spinovoi metki [Stabilization of albumin by the CaCl2- and MgCl2‑regulated interaction of macromolecules: A study by the spin-label method]. Biofizika [Biophysics]. 1997. Vol. 42, no. 5. P. 1020–1028.

Rozhkov S. P., Goryunov A. S. Measurement of specific surface energy of the protein hydration shell using spin label EPR. Biophysics. 2006. Vol. 51, no. 2. P. 196–201. doi: 10.1134/S0006350906020060

Rozhkov S. P, Goryunov A. S. Stable, metastable, and supercritical phases in solutions of globular proteins between upper and lower denaturation temperatures. Biophysics. 2017. Vol. 62, no. 4. P. 539–546. doi: 10.1134/S0006350917040182

Rozhkov S. P., Goryunov A. S. Fazovye svoistva belkovykh

rastvorov i denaturatsiya belka [Phase properties of protein solutions and protein denaturation]. Trudy KarNTs RAN [Trans. KarRC RAS]. No. 6. 2019. P. 5–15. doi: 10.17076/eb1031

Rozhkov S. P., Käiväräinen A. I. Study of the flexibility of serum albumin molecules by the spin label method. Biophysics. 1985. Vol. 30, no. 5. P. 838–844.

Wasserman A. M., Kovarskii A. L. Spinovye metki i zondy v fiziko-khimii polimerov [Spin labels and zones in the physical chemistry of polymers]. Moscow: Nauka, 1986. 246 p.

Zhdanov R. I. Paramagnitnye modeli biologicheski aktivnykh soedinenii [Paramagnetic models of biologically active compounds]. Moscow: Nauka, 1981. 280 p.

Adachi M., So M., Sakurai K., Kardos J., Goto Y. Supersaturation-

limited and unlimited phase transitions compete to produce the pathway complexity in amyloid fibrillation. J. Biol. Chem. 2015. Vol. 290, no. 29. P. 18134–18145. doi: 10.1074/jbc.M115.648139

Alfano C., Sanfelice D., Martin S. R., Pastore A., Temussi P. A. An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states. Nat. Commun. 2017. Vol. 8. P. 15428. doi:

1038/ncomms15428

Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars. Biochemistry. 1982. Vol. 21. P. 6536–6544. doi: 10.1021/bi00268a033

Auer S., Ricchiuto P., Kashchiev D. Two-step nucleation of amyloid fibrils: omnipresent or not? J. Mol. Biol. 2012. Vol. 422, no. 5. P. 723–730. doi: 10.1016/j.jmb.2012.06.022

Aznauryan M., Nettels D., Holla A., Hofmann H., Schuler B. Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J. Am. Chem. Soc. 2013. Vol. 135, no. 38. P. 14040−14043. doi: 10.1021/ja407009w

Berliner L. J. (ed.) Spin labeling. Theory and applications. New York: Academic Press, 1976. 592 p.

Bian L., Wu D., Hu W. Temperature-induced conformational

transition of bovine serum albumin in neutral aqueous solution by reversed-phase liquid chromatography. Biomed. Chromatogr. 2014. Vol. 28. P. 295–301. doi: 10.1002/bmc.3020

Borzova V. A., Markossian K. A., Chebotareva N. A., Kleymenov S. Y., Stein-Margolina V. A., Markov D. I., Kurganov B. I., Poliansky N. B., Muranov K. O., Shubin V. V. Kinetics of thermal denaturation and aggregation of bovine serum albumin. PLoS One. 2016. Vol. 11, no. 4: e0153495. doi: 10.1371/journal.pone.0153495

Braun M. K., Wolf M., Matsarskaia O., DaXVela S., Roosen-Runge F., Sztucki M., Roth R., Zhang F., Schreiber F. Strong isotope effects on effective interactions and phase behavior in protein solutions in the presence of multivalent ions. J. Phys. Chem. B. 2017. Vol. 121, no. 7. P. 1731−1739. doi: 10.1021/acs. jpcb. 6b12814

Buell A. K. The nucleation of protein aggregates – from crystals to amyloid fibrils. Int. Rev. Cell. Mol. Biol. 2017. Vol. 329. P. 187–226. doi: 10.1016/bs.ircmb.2016.08.014

Dignon G. L., Zheng W., Kim Y. C., Mittal J. Temperature-

Controlled Liquid−Liquid Phase Separation of Disordered Proteins. ACS Cent. Sci. 2019. Vol. 5(5). P. 821−830. doi: 10.1021/acscentsci.9b00102

Dumetz A. C., Chockla A. M., Kaler E. W., Lenhoff A. M. Protein phase behavior in aqueous solutions: crystallization, liquid – liquid phase separation, gels, and aggregates. Biophys. J. 2008. Vol. 94, no. 2. P. 570–583. doi: 10.1529/biophysj.107.116152

Fullerton G. D., Kanal K. M., Cameron I. L. Osmotically unresponsive water fraction on proteins: Non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration. Cell Biol. Int. 2006. Vol. 30, no. 1. P. 86–92. doi: 10.1016/j.cellbi.2005.11.001

Grigsby J. J., Blanch H. W., Prausnitz J. M. Cloudpoint temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH. Biophys. Chem. 2001. Vol. 91, no. 3. P. 231–243. doi: 10.1016/s0301-4622(01)00173-9

Iosin M., Canpean V., Astilean S. Spectroscopic studies on pH- and thermally induced сonformational changes of bovine serum albumin adsorbed onto gold nanoparticles. J. Photochem. Photobiol. A: Chem. 2011. Vol. 217, no. 2–3. P. 395–401. doi: 10.1016/j.jphotochem.2010.11.012

Juarez J., Goy-Lopez S. G., Cambón A., Taboada P., Mosquera V. Influence of electrostatic interactions on the fibrillation process of human serum albumin. J. Phys. Chem. B. 2009. Vol. 113, no. 30. P. 10521–10529. doi: 10.1021/jp902224d

Juarez J., Taboada P., Goy-Lopez S., Cambón A., Madec M.‑B., Yeates S. G., Mosquera V. Additional supra-self assembly of human serum albumin under amyloid-like forming solution conditions. J. Phys. Chem. B. 2009. Vol. 113, no. 36. P. 12391–12399. doi: 10.1021/jp904167e

Li D., Zhang W., Yu X., Wang Z., Su Z., Wei G. When biomolecules meet graphene: from molecule-level interactions

to material design and applications. Nanoscale. 2016. Vol. 8, no. 47. P. 19491–19509. doi: 10.1039/C6NR07249F

Ma L., Cui Q. Temperature dependence of salt-protein association is sequence specific. Biochemistry. 2006. Vol. 45, no. 48. P. 14466–14472. doi: 10.1021/bi0613067

Matsarskaia O., Braun M. K., Roosen-Runge F.,

Wolf M., Zhang F., Roth R., Schreiber F. Cation-induced

hydration effects cause lower critical solution temperature

behavior in protein solutions. J. Phys. Chem. B. 2016. Vol. 120, no. 31. P. 7731−7736. doi: 10.1021/acs.jpcb.6b04506

Matsarskaia O., Roosen-Runge F., Lotze G., Möller J., Mariani A., Zhang F., Schreiber F. Tuning phase transitions of aqueous protein solutions by multivalent cations. Phys. Chem. Chem. Phys. 2018. Vol. 20, no. 42. P. 27214–27225. doi: 10.1039/c8cp05884a

Miti T., Mulaj M., Schmit J. D., Muschol M. Stable, metastable and kinetically trapped amyloid aggregate phases. Biomacromolecules. 2015. Vol. 16, no. 1. P. 326–335. doi: 10.1021/bm501521r

Pavićević A., Luo J., Popović‑Bijelić A., Mojović M. Maleimido-proxyl as an EPR spin label for the evaluation of conformational changes of albumin. Eur. Biophys. J. 2017. Vol. 46, no. 8. P. 773–787. doi: 10.1007/s00249‑017‑1257‑z

Peters T. All about albumin: biochemistry, genetics and medical applications. San Diego, СA, Academic Press, Inc., 1996.

Reslan M., Kayser V. The effect of deuterium oxide on the conformational stability and aggregation of bovine serum albumin. Pharm. Dev. Technol. 2016. Vol. 23, no. 10. P. 1030–1036. doi: 10.1080/10837450.2016.1268157

Rezaei T. M., Moghaddamnia S. H., Ranjbar B., Amani M., Marashi S.‑A. Conformational study of human serum albumin in pre-denaturation temperatures by differential scanning calorimetry, circular dichroism and UV spectroscopy. J. Biochem. Mol. Biol. 2006. Vol. 39, no. 5. P. 530–536. doi: 10.5483/BMBRep.2006.39.5.530

Royer C., Winter R. Protein hydration and volumetric properties. Curr. Opin. Colloid Interface Sci. 2011. Vol. 16, no. 6. P. 568–571. doi: 10.1016/j.cocis.2011.04.008

Rozhkov S. P. Phase transitions and precrystallization processes in a water-protein-electrolyte system. J. Cryst. Growth. 2004. Vol. 273, no. 1–2. P. 266–279. doi: 10.1016/j.jcrysgro.2004.08.021

Rozhkov S. P., Goryunov A. S. Effects of inorganic salts on the structural heterogeneity of serum albumin solutions. Eur. Biophys. J. 2000. Vol. 28, no. 8. P. 639–647. doi: 10.1007/s002490050004

Rozhkov S. P., Goryunov A. S. Thermodynamic study of protein phases formation and clustering in model water-protein-salt solutions. Biophys. Chem. 2010. Vol. 151, no. 1–2. P. 22–28. doi: 10.1016/j.bpc.2010.04.007

Rozhkov S. P., Goryunov A. S. Dynamic protein clusterization in supercritical region of the phase diagram of water-protein-salt solutions. J. Supercrit. Fluid. 2014. Vol. 95. P. 68–74. doi: 10.1016/j.supflu.2014.07.028

Rozhkov S. P., Goryunov A. S. Stable, metastable, and supercritical phases in solutions of globular proteins between upper and lower denaturation temperatures. Biophysics. 2017. Vol. 62, no. 4. P. 539–546. doi: 10.1134/S0006350917040182

Sanfelice D., Temussi P. A. Cold denaturation as a tool to measure protein stability. Biophys. Chem. 2016. Vol. 208. P. 4–8. doi: 10.1016/j.bpc.2015.05.007

Senske M., Constantinescu-Aruxandei D., Havenith M., Herrmann Ch., Weingärtner H., Ebbinghaus S. The temperature dependence of the Hofmeister series: thermodynamic fingerprints of cosolute – protein interactions. Phys. Chem. Chem. Phys. 2016. Vol. 18, no. 43. P. 29698–29708. doi: 10.1039/c6cp05080h

Shin Y., Brangwynne C. P. Liquid phase condensation in cell physiology and disease. Science. 2017. Vol. 357, no. 6357. pii: eaaf4382. doi: 10.1126/science.aaf4382

Smeller L. Pressure temperature phase diagrams of biomolecules. Biochim. Biophys. Acta. 2002. Vol. 1595, no. 1–2. P. 11–29. doi: 10.1016/s0167-4838(01)00332-6

Treuel L., Brandholt S., Maffre P., Wiegele S., Shang L., Nienhaus G. U. Impact of protein modification on the protein corona on nanoparticles and nanoparticle cell interactions. ACS Nano. 2014. Vol. 8, no. 1. P. 503–513. doi: 10.1021/nn405019v

Uversky V. N., Li J., Fink A. L. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-Synuclein. J. Biol. Chem. 2001. Vol. 276, no. 47. P. 44284–44296. doi: 10.1074/jbc.M105343200

Vekilov P. G. Phase diagrams and kinetics of phase transitions in protein solutions. J. Phys. Condens. Matter. 2012. Vol. 24, no. 19. P. 193101. doi: 10.1088/0953-8984/24/19/193101

Wang Y., Annunziata O. Comparison between protein-

polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition. J. Phys. Chem. B. 2006. Vol. 111. no. 5. P. 1222–1230. doi: 10.1021/jp065608u

Wang Y., Latypov R. F., Lomakin A., Meyer J. A., Kerwin B. A., Vunnum S., Benedek G. B. Quantitative evaluation of colloidal stability of antibody solutions using PEG-induced liquid−liquid phase separation. Mol. Pharmaceutics. 2014. Vol. 11, no. 5. P. 1391−1402. doi: 10.1021/mp400521b

Wetzel R., Becker M., Behlke J., Billwitz H., Böhm S., Ebert B.. Hamann H., Krumbiegel J., Lassmann G. Temperature behaviour of human serum albumin. Eur. J. Biochem. 1980. Vol. 104. P. 469–478. doi: 10.1111/j.1432-1033.1980.tb04449.x

Zaman M., Ahmad E., Qadeer A., Rabbani G., Khan R. Nanoparticles in relation to peptide and protein aggregation. Int. J. Nanomedicine. 2014. Vol. 9. P. 899–912. doi: 10.2147/IJN.S54171

Zhang F., Skoda M. W. A., Jacobs R. M. J., Martin R. A., Martin C. M., Schreiber F. Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions. J. Phys. Chem. B. 2006. Vol. 111, no. 1. P. 251–259. doi: 10.1021/jp0649955

Zhang F., Weggler S., Ziller M. J., Ianeselli L., Heck B. S., Hildebrandt A., Kohlbacher O., Skoda M. W. A., Jacobs R. M. J., Schreiber F. Universality of protein reentrant condensation in solution induced by multivalent metal ions. Proteins. 2010. Vol. 78, no. 16. P. 3450–3457. doi: 10.1002/prot.22852




DOI: http://dx.doi.org/10.17076/eb1222

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019