Соматический эмбриогенез сосны обыкновенной: современное состояние вопроса, перспективы применения в лесном хозяйстве

Елена Валентиновна Новичонок, Наталия Алексеевна Галибина, Борис Владимирович Раевский, Мария Алексеевна Ершова, Elena Novichonok, Natalia Galibina, Boris Raevsky, Maria Ershova

Аннотация


В обзоре представлена информация об особенностях селекции и создания лесосеменных плантаций сосны обыкновенной(PinussylvestrisL.) как одного из ключевых лесообразующих видов северо-запада России, имеющего значительную экологическую и экономическую ценность для данного региона. Соматический эмбриогенез – перспективный биотехнологический метод, позволяющий массово размножать ценные особи, полученных, в том числе в процессе реализации селекционных программ. На примере разных представителей рода Pinus описаны основные этапы соматического эмбриогенеза. Рассмотрено влияние условий и срока культивирования на эффективность соматического эмбриогенеза и последующего развития соматических зародышей в растения-регенеранты. Особое внимание уделено особенностям роста и физиологии клонов сосны в полевых условиях.


Ключевые слова


Pinus sylvestris; плюсовая селекция; лесосеменные плантации; генетическая оценка; полевые испытания; соматические зародыши; условия культивирования

Полный текст:

PDF

Литература


Ананьев В. А., Сорока А. Н. Структура лесного фонда, динамика и перспективы лесопользования в Карелии // Лесные ресурсы таежной зоны России: проблемы лесопользования и лесовосстановления: Материалы Всеросс. науч. конф. с международ. участием (Петрозаводск 30.09-03.10.2009 г.). Петрозаводск: КарНЦ РАН. 2009. C. 15-17.

Ильинов А. А., Раевский Б. В. Сравнительная оценка генетического разнообразия естественных популяций и клоновых плантаций сосны обыкновенной и ели финской в Карелии // Экологическая генетика. 2015. Т. 13. № 4. с. 55-67.

Раевский Б. В., Щурова М. Л., Чепик Ф. А. Некоторые результаты селекционно-генетической оценки плюсовых деревьев сосны обыкновенной в испытательных культурах Карелии // Известия Санкт-Петербургской лесотехнической академии. 2018. Вып. 224. с. 6-20.

Третьякова И. Н. Эмбриогенные клеточные линии и соматический эмбриогенез в культуре in vitro у лиственницы сибирской // Доклады академии наук. 2013.Т. 450. № 1. с. 1-4. doi.org/10.7868/S0869565213130306.

Третьякова И. Н., Ворошилова Е. В., Шуваев Д. Н. Каллусогенез и индукция соматического эмбриогенеза у гибридных семян Pinus sibirica // Физиология растений. 2014. Т. 61. №2. С. 297-303. doi.org/10.7868/S0015330314020171.

Третьякова И. Н., Шуваев Д. Н. Соматический эмбриогенез Pinus pumila и продуктивность эмбриогенных линий при длительном культивировании in vitro // Онтогенез. 2015. Т. 46. № 5. С. 327-337. doi.org/10.7868/S0475145015050092.

Указания по лесному семеноводству в Российской Федерации. М., 2000. 197 с.

Шуклина А. С., Третьякова И. Н. Соматический эмбриогенез видов рода Pinus в культуре in vitro // Успехи современной биологии. 2019. Т. 139. № 2. с. 184-195. doi.org/10.1134/S004213241902008X.

Abrahamsson M., Clapham D., von Arnold S. Step wise protocols for somatic embryogenesis of important woody plants / Eds. S. M. Jain, P. Gupta. Cham, Switzerland: Springer, 2018. Vol. I. P. 123-133.

Ahtikoski A., Salminen H., Ojansuu R., Hynynen J., Kärkkäinen K., Haapanen M. Optimizing stand management involving the effect of genetic gain: preliminary results for Scots pine in Finland // Can J For Res. 2013. Vol. 43, no. 3. P. 299-305. doi.org/10.1139/cjfr-2012-0393.

Aronen T. Vegetative propagation of forest trees / Eds. Y.-S.Park, J. M. Bonga, H.-K.Moon. Seoul, Korea: National Institute of Forest Science, 2016. P. 515-527.

Aronen T., Pehkonen T., Ryynänen L. Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris // Scan J For Res. 2009. Vol. 24, no. 5. P. 372-383. doi.org/10.1080/02827580903228862.

Becwar M. R., Levis E. C., Handley W., III, Rutter M. R. Method for regeneration of coniferous plants by somatic embryogenesis // US Patent 5,413,930. 1995.

Becwar M. R., Pullman G. S. Somatic Embryogenesis in Woody Plants. Forestry Sciences / Eds. S. M. Jain, P. K. Gupta, R. J. Newton. Dordrecht Högberg: Springer, 2015. Vol. 44-46. P. 287-301. doi.org/10.1007/978-94-011-0960-4_18.

Benowicz A., Grossnickle S. C., El-Kassaby Y. A. Field assessment of Douglas-fir somatic and zygotic seedlings with respect to gas exchange, water relations, and frost hardiness // Canadian Journal of Forest Research. 2002. Vol. 32, no. 10. P. 1822-1828. https://doi.org/10.1139/x02-093.

Bonga J., Park Y.-S., Ding C. What technical improvements are needed to achieve industrial application of conifer somatic embryogenesis? // Proceedings the Fifth International Conference of the IUFRO Unit 2.09.02: Somatic Embryogenesis and Other Vegetative Propagation Technologies (Coimbra, Portugal, September 10-15, 2018). 2018. P. 4-24.

Bozhkov P. V., Von Arnold S. Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos // Physiologia Plantarum. 2002. Vol. 104, no. 2. P. 211-224. doi.org/10.1034/j.1399-3054.1998.1040209.x.

Burg K., Helmersson A., Bozhkov P., von Arnold S. Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine // Journal of Experimental Botany. 2007. Vol. 58, no. 3. P. 687-698. doi.org/10.1093/jxb/erl241.

Carneros E., Celestino C., Klimaszewska K., Park Y.-S., Toribio M., Bonga J. M. Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis // Plant Cell Tissue Organ Culture. 2009. V. 98, no. 2. P. 165–178. doi.org/10.1007/s11240-009-9549-3.

Carneros E., Hernández I., Toribio M., Díaz-Sala C., Celestino C. Effect of different cryoprotectant procedures on the recovery and maturation ability of cryopreserved Pinus pinea embryogenic lines of different ages // In Vitro Cellular & Developmental Biology – Plant. 2017. Vol. 53, no. 5. P. 469-477. doi.org/10.1007/s11627-017-9833-6.

Durrant T., de Rigo D., Caudullo G. European atlas of forest tree species / Eds. J. Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, A. Mauri. Luxembourg e012300þ: Publications Office of the European Union, 2016. P. 132-133.

Durzan D. J., Gupta P. K. Somatic polyembryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures // Plant Sci. 1987. Vol. 52, no. 3. P. 229-235. doi.org/10.1016/0168-9452(87)90056-2.

Ford C. S., Jones N. B., van Staden J. Cryopreservation and plant regeneration from somatic embryos of Pinus patula // Plant Cell Reports. 2000 .Vol. 19, no. 6. P. 610-615. doi.org/10.1007/s002990050781.

García-Mendiguren O., Montalbán I. A.. Goicoa T., Ugarte M. D., Moncaleán P. Environmental conditions at the initial stages of Pinus radiate somatic embryogenesis affect the production of somatic embryos // Trees. 2016. Vol. 30, no. 3. P. 949-958. doi.org/10.1007/s00468-015-1336-7.

Grossnickle S. C., Major J. E. Interior spruce seedlings compared with emblings produced from somatic embryogenesis. II. Stock quality assessment prior to planting // Canadian Journal of Forest Research. 1994a. Vol. 24, no. 7. P. 1385-1396. doi.org/10.1139/x94-179.

Grossnickle S. C., Major J. E. Interior spruce seedlings compared with emblings produced from somatic embryogenesis. II. Stock quality assessment prior to planting // Canadian Journal of Forest Research. 1994b. Vol. 24, no. 7.P. 1397-1407, https://doi.org/10.1139/x94-180.

Gupta P. K., Durzan D. J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana) // Plant Cell Reports. 1985. Vol. 4, no. 4. P. 177-179. doi.org/10.1007/BF00269282.

Haapanen M., Hynynen J., Ruotsalainen S., Siipilehto J., Kilpeläinen M. 2016. Realised and projected gains in growth, quality and simulated yield of genetically improved Scots pine in southern Finland // Eur J For Res. 2016. Vol. 35, no. 6. P. 997-1009. doi: 10.1007/s10342-016-0989-0.

Häggman H. M., Ryynänen L. A., Aronen T. S., Krajnakova J. Cryopreservation of embryogenic cultures of Scots pine // Plant Cell, Tissue and Organ Culture. 1998. Vol. 54, no. 1. P. 45-53. doi.org/10.1023/A:1006104325426.

Häggman H., Jokela A., Krajnakova J., Kauppi A., Niemi K., Aronen T. Somatic embryogenesis of Scots pine: cold treatmentand characteristics of explants affecting induction // Journal of Experimental Botany. 1999. Vol. 50, no. 341. P. 1769–1778. doi.org/10.1093/jxb/50.341.1769.

Högberg K.-A., Bozhkov P. V., Grönroos R., Von Arnold S. Critical factors affecting ex vitro performance of somatic embryo plants of Picea abies // Journal Scandinavian Journal of Forest Research. 2001. Vol. 16, no. 4. P. 295-304. doi.org/10.1080/02827580116772.

Högberg K.-A., Bozhkov P. V., von Arnold S. Early selection improves clonal performance and reduces intraclonal variation of Norway spruce plants propagated by somatic embryogenesis // Tree Physiology. 2003. Vol. 23, no. 3. P. 211-216. doi.org/10.1093/treephys/23.3.211.

Jansson G. Gains from selecting Pinus sylvestris in southern Sweden for volume per hectare // Scand J For Res. 2007. Vol. 22, no. 3. P. 185–192. doi.org/10.1080/02827580701330894.

Jansson G., Hansen J. K., Haapanen M., Kvaalen H., Steffenrem A. The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland // Scandinavian Journal of Forest Research. 2017. Vol. 32, no. 4. P. 273-286. doi.org/10.1080/02827581.2016.1242770.

Keinonen‐Mettälä K., Jalonen P., Eurola P., von Arnold S., von Weissenberg K. Somatic embryogenesis of Pinus sylvestris // Scandinavian Journal of Forest Research. 1996. Vol. 11, no. 1-4. P. 242-250. doi.org/10.1080/02827589609382933.

Klimaszewska K., Smith D. R. Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum // Physiologia Plantarum. 1997. Vol. 100. P. 947-957. doi.org/10.1111/j.1399-3054.1997.tb00022.x.

Krakau U. K, Liesebach M., Aronen T., Lelu-Walter M.A., Schneck V. Forest tree breeding in Europe: Current State-of-the-Art and Perspectives / Eds. L. E. Pagues. Dordrecht: Springer, 2013. P. 267-323. doi 10.1007/978-94-007-6146-9_6.

Kvaalen H. Bruk av foredla plantemateriale. God økonomi for skogeigaren og samfunnet. Stiftelsen det norske Skogfrøverk.Artikler skrevet i anledning Skogfrøverkets “Strategi for skogplanteforedling 2010- 2040” [Improved forest reproductive materials. Good economy for forest owner and society.] Norwegian, The Norwegian Forest Seed Center. Append. to proposed “Strategy for tree breeding 2010-2040. 2010. P. 16-18.

Lambardi M., Ozudogru E. A., Benelli C. Plant cryopreservation: a practical guide / Eds. B. M. Reed. New York, NY: Springer, 2008. P. 177–210. doi:10.1007/978-0-387-72276-4_9.

Latutrie M., Aronen T. Long-term cryopreservation of embryogenic Pinus sylvestris cultures // Scandinavian Journal of Forest Research. 2013. Vol. 28, no. 2. P. 103-109. doi.org/10.1080/02827581.2012.701325.

Lelu M.‐A., Bastien C., Drugeault A., Gouez M.‐L., Klimaszewska K. Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulator // Physiologia Plantarum. 1999. Vol. 105, no. 4. P. 719-728. doi.org/10.1034/j.1399-3054.1999.105417.x.

Lelu-Walter M. A., Bernier-Cardou M., Klimaszewska K. Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis // Plant Cell, Tissue and Organ Culture. 2008. Vol. 92, no. 1. P. 31-45. doi.org/10.1007/s11240-007-9300-x.

Lelu-Walter M.-A., Klimaszewska K., Miguel C., Aronen T., Hargreaves C., Teyssier C. Somatic embryogenesis: fundamental aspects and applications / Eds. V. Loyola-Vargas, N. Ochoa-Alejo. Cham: Springer, 2016. P. 319-365. doi.org/10.1007/978-3-319-33705-0_19.

Lineros Y., Balocchi C., Muñoz X., Sánchez M., Ríos D. Cryopreservation of Pinus radiata embryogenic tissue: effects of cryoprotective pretreatments on maturation ability // PCTOC. 2018. Vol. 135, no. 2. P. 357-366. doi.org/10.1007/s11240-018-1469-7.

Litvay J. D., Verma D. C., Johnson M. A. Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.) // Plant Cell Reports. 1985. Vol. 4, no. 6. P. 325-328. doi.org/10.1007/BF00269890.

Marum L., Rocheta M., Maroco J., Oliveira M. M., Miguel C. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster) // Plant Cell Reports. 2009. Vol. 28, no.4. P. 673-682. doi.org/10.1007/s00299-008-0668-9.

Montalbán I. A., De Diego N., Moncaleán P. Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments // Acta Physiologiae Plantarum. 2012. Vol. 44, no. 2. P. 451-460. doi.org/10.1007/s11738-011-0841-6.

Montalbán I. A., García-Mendiguren O., Goicoa T., Ugarte M. D., Moncaleán P. Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiate // New Forests. 2015. Vol. 6, no. 2. doi.org/10.1007/s11056-014-9457-1.

Montalbán I. A., Garcia-Mendiguren O., Moncaleán P. In vitro embryogenesis in higher plants.Methods in molecular biology.Vol. 1359. / Eds. M. A. Germanà, M. Lambardi. New York: Springer, 2016. P. 405-415. doi 10.1007/978-1-4939-3061-6_21.

Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures // Physiologia Plantarum. 1962. Vol. 15, no. 3. P. 473-497. doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Niemi K., Häggman H. Pisolithus tinctorius promotes germination and forms mycorrhizal structures in Scots pine somatic embryos in vitro // Mycorrhiza. 2002. Vol. 12, no. 5. P. 263-267. doi.org/10.1007/s00572-002-0181-x.

Niemi K., Krajnakova J., Häggman H. Interaction between embryogenic cultures of Scots pine and ectomycorrhizal fungi // Mycorrhiza. 1998. Vol. 8, no. 2. P. 101-107. doi.org/10.1007/s005720050219.

Niskanen A.-M., Lu J., Seitz S., Keinonen K., Von Weissenberg K., Pappinen A. Effect of parent genotype on somatic embryogenesis in Scots pine (Pinus sylvestris) // Tree Physiology. 2004. Vol. 24, no. 11. P. 1259-1265. https://doi.org/10.1093/treephys/24.11.12592004

O'Brien I. E.W., Smith D. R., Gardner R. C., Murray B. G. Flow cytometric determination of genome size in Pinus // Plant Science. 1996. Vol. 115, no. 1. P. 91-99. doi.org/10.1016/0168-9452(96)04356-7.

Park Y. S. Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations // Ann. For. Sci. 2002.Vol. 59, no. 5-6. P. 651-656. doi.org/10.1051/forest:2002051.

Park Y. S., Lelu-Walter M. A., Harvengt L., Trontin J. F., MacEacheron I., Klimaszewska K., Bonga J. M. Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France // Plant Cell, Tissue and Organ Culture. 2006. Vol. 86, no. 1. P. 87-101. doi.org/10.1007/s11240-006-9101-7.

Park Y.-S., Beaulieu J., Bousquet J. Vegetative propagation of forest trees / Eds. Y.-S. Park, J. M. Bonga, H.-K.Moon. Seoul, Korea: National Institute of Forest Science (NiFos), 2016. P. 302-322.

Pereira C., Montalbán I. A., García-Mendiguren O., Goicoa T., Ugarte M. D., Correia S., Canhoto J. M., Moncaleán P. Pinus halepensis somatic embryogenesis is affected by the physical and chemical conditions at the initial stages of the process // Journal of Forest Research. 2016. Vol. 21, no. 3. P. 143-150. doi.org/10.1007/s10310-016-0524-7.

Rai M. K., Shekhawat N. S., Harish, Gupta A. K., Phulwaria M., Ram K., Jaiswal U. The role of abscisic acid in plant tissue culture: a review of recent progress // Plant Cell, Tissue Organ Cult. 2011. Vol. 106, no. 2. P. 179–190. doi.org/10.1007/s11240-011-9923-9.

Review of the Swedish tree breeding programme / Editor O. Rosvall. Skogforsk, 2011.88 p.

Sarmast M. K. Genetic transformation and somaclonal variation in conifers // Plant Biotechnology Reports. 2016. Vol. 10, no. 6. P. 309–325. doi:10.1007/s11816-016-0416-5.

Simonsen R., Rosvall O., Gong P., Wibe S. Profitability of measures to increase forest growth // For Pol Econ. 2010. Vol. 12, no. 6. P. 473-482. doi.org/10.1016/j.forpol.2010.03.002.

Thompson D. Challenges for the large-scale propagation of forest trees by somatic embryogenesis - a review // Proceedings of the Third International Conference of the IUFRO Unit 2.09.02 on Woody Plant Production Integrating Genetic and Vegetative Propagation Technology (Vitoria-Gasteiz, Spain, September 18–12, 2014). 2014. P. 81-91.

Tret'yakova I.N., Park M. E. Somatic polyembriogenesis of Larix sibirica in embryogenic in vitroculture // Rus. J. Dev. Biol. 2018. Vol. 49, no. 4. P. 222-233. doi.org/10.1134/S1062360418040069.

References in English

Anan’ev V. A., Soroka A. N. Struktura lesnogo fonda, dinamika i perspektivy lesopol’zovaniya v Karelii [The structure of the forest fund, the dynamics and prospects of forest management in Karelia]. Lesnye resursy taezhnoi zony Rossii: probl. lesopol’zovaniya i lesovosstanovleniya: Mat. Vseros. nauch. konf. s mezhdunarod. uchastiem (Petrozavodsk 30.09–03.10.2009 g.) [Forest resources of the taiga zone in Russia. Issues of forest exploitation and restoration: Proceed. All-Russ. sci. conf. with int. part. (Petrozavodsk, 30.09 – 03.10.2009)].

Petrozavodsk: KarRC RAS, 2009. P. 15–17.

Il’inov A. A., Raevskii B. V. Sravnitel’naya otsenka geneticheskogo raznoobraziya estestvennykh populyatsii i klonovykh plantatsii sosny obyknovennoi i eli finskoi v Karelii [Genetic diversity comparative evaluation of Pinus sylvestris L. and Picea x Fennica (regel) kom. native populations and clonal seed orchards in Russian Karelia]. Ekol. genetika [Ecol. Genetics]. 2015. Vol. 13, no. 4. P. 55–67.

Raevskii B. V., Shurova M. L., Chepik F. A. Nekotorye rezul’taty selektsionno-geneticheskoi otsenki plyusovykh derev’ev sosny obyknovennoi v ispytatel’nykh kul’turakh Karelii [Some results of Scots pine plus trees breeding assessment in progeny trial in Karelia]. Izvestiya Sankt-Peterburgskoi lesotekh. akad. [News

of the St. Petersburg State Forest Tech. Acad.]. 2018. Vol. 224. P. 6–20.

Shuklina A. S., Tret’yakova I. N. Somaticheskii embriogenez vidov roda Pinus v kul’ture in vitro [Somatic embryogenesis of species of the genus Pinus in culture in vitro]. Uspekhi sovr. biol. [Biol. Bull. Reviews]. 2019. Vol. 139, no. 2. P. 184–195. doi: 10.1134/S004213241902008X

Tret’yakova I. N. Embriogennye kletochnye linii i somaticheskii

embriogenez v kul’ture in vitro u listvennitsy sibirskoi [Embryogenic cell lines and somatic embryogenesis in in vitro culture of the Siberian larch]. DAN [Dokl. Biol. Sci.]. 2013. Vol. 450, no. 1. P. 122–125. doi:10.7868/S0869565213130306

Ukazaniya po lesnomu semenovodstvu v Rossiiskoi Federatsii [Guidance on forest seed production in the Russian Federation]. Moscow, 2000.197 pp.

Abrahamsson M., Clapham D., von Arnold S. Step wise protocols for somatic embryogenesis of important woody plants. Cham, Switzerland: Springer, 2018. Vol. I. P. 123–133.

Ahtikoski A., Salminen H., Ojansuu R., Hynynen J., Kärkkäinen K., Haapanen M. Optimizing stand management involving the effect of genetic gain: preliminary results for Scots pine in Finland. Can. J. For. Res. 2013. Vol. 43, no. 3. P. 299–305. doi: 10.1139/cjfr-2012-0393

Aronen T. Vegetative propagation of forest trees. Seoul, Korea: Nat. Inst. For. Sci., 2016. P. 515–527.

Aronen T., Pehkonen T., Ryynänen L. Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scan. J. For. Res. 2009. Vol. 24, no. 5. P. 372–383. doi: 10.1080/02827580903228862

Becwar M. R., Levis E. C., Handley W. III, Rutter M. R. Method for regeneration of coniferous plants by somatic embryogenesis. US Patent 5,413,930. 1995.

Becwar M. R., Pullman G. S. Somatic embryogenesis in woody plants. Forestry sciences. Dordrecht Högberg: Springer, 2015. Vol. 44–46. P. 287–301. doi: 10.1007/978‑94‑011‑0960‑4_18

Benowicz A., Grossnickle S. C., El-Kassaby Y. A. Field assessment of Douglas-fir somatic and zygotic seedlings with respect to gas exchange, water relations, and frost hardiness. Can. J. For. Res. 2002. Vol. 32, no. 10. P. 1822–1828. doi: 10.1139/x02-093

Bonga J., Park Y.‑S., Ding C. What technical improvements are needed to achieve industrialapplication of conifer somatic embryogenesis? Proceed. the Fifth Int. Conf. of the IUFRO Unit 2.09.02: Somatic Embryogenesis and Other Vegetative Propagation Technologies (Coimbra, Portugal, September 10–15, 2018). 2018. P. 4–24.

Bozhkov P. V., von Arnold S. Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiologia Plantarum. 2002. Vol. 104, no. 2. P. 211–224. doi: 10.1034/j.1399-3054.1998.1040209.x

Burg K., Helmersson A., Bozhkov P., von Arnold S. Developmental and genetic variation in nuclear microsatellite

stability during somatic embryogenesis in pine. J. Exp. Bot. 2007. Vol. 58, no. 3. P. 687–698. doi: 10.1093/jxb/erl241

Carneros E., Hernández I., Toribio M., Díaz-Sala C., Celestino C. Effect of different cryoprotectant procedures on the recovery and maturation ability of cryopreserved Pinus pinea embryogenic lines of different ages. In Vitro Cellular & Developmental Biology – Plant. 2017. Vol. 53, no. 5. P. 469–477. doi: 10.1007/s11627‑017‑9833‑6

Durrant T., de Rigo D., Caudullo G. European atlas of forest tree species. Luxembourg e012300þ: Publications Office of the European Union, 2016. P. 132–133.

Durzan D. J., Gupta P. K. Somatic polyembryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures. Plant Sci. 1987. Vol. 52, no. 3. P. 229–235. doi: 10.1016/0168-9452(87)90056-2

Ford C. S., Jones N. B., van Staden J. Cryopreservation and plant regeneration from somatic embryos of Pinus patula. Plant Cell Reports. 2000. Vol. 19, no. 6. P. 610–615. doi: 10.1007/s002990050781

García-Mendiguren O., Montalbán I. A., Goicoa T., Ugarte M. D., Moncaleán P. Environmental conditions at the initial stages of Pinus radiate somatic embryogenesis affect the production of somatic embryos. Trees. 2016. Vol. 30, no. 3. P. 949–958. doi: 10.1007/s00468‑015‑1336‑7

Grossnickle S. C., Major J. E. Interior spruce seedlings compared with emblings produced from somatic embryogenesis. II. Stock quality assessment prior to planting. Can. J. For. Res. 1994a. Vol. 24, no. 7. P. 1385–1396. doi: 10.1139/x94-179

Grossnickle S. C., Major J. E. Interior spruce seedlings compared with emblings produced from somatic embryogenesis. II. Stock quality assessment prior to planting. Can. J. For. Res. 1994b. Vol. 24, no. 7. P. 1397–1407. doi: 10.1139/x94-180

Gupta P. K., Durzan D. J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Reports. 1985. Vol. 4, no. 4. P. 177–179. doi: 10.1007/BF00269282

Haapanen M., Hynynen J., Ruotsalainen S., Siipilehto J., Kilpeläinen M. Realised and projected gains in growth, quality and simulated yield of genetically improved Scots pine in southern Finland. Eur. J. For. Res. 2016. Vol. 35, no. 6. P. 997–1009. doi: 10.1007/s10342‑016‑0989‑0

Häggman H. M., Ryynänen L. A., Aronen T. S., Krajnakova J. Cryopreservation of embryogenic cultures of Scots pine. PCTOC. 1998. Vol. 54, no. 1. P. 45–53. doi: 10.1023/A:1006104325426

Häggman H., Jokela A., Krajnakova J., Kauppi A., Niemi K., Aronen T. Somatic embryogenesis of Scots pine: cold treatmentand characteristics of explants affecting induction. J. Exp. Bot. 1999. Vol. 50, no. 341. P. 1769–1778. doi: 10.1093/jxb/50.341.1769

Högberg K.‑A., Bozhkov P. V., Grönroos R., von Arnold S. Critical factors affecting ex vitro performance of somatic embryo plants of Picea abies. Scand. J. For. Res. 2001. Vol. 16, no. 4. P. 295–304. doi: 10.1080/02827580116772

Högberg K.‑A., Bozhkov P. V., von Arnold S. Early selection

improves clonal performance and reduces intraclonal variation of Norway spruce plants propagated by somatic embryogenesis. Tree Physiology. 2003. Vol. 23, no. 3. P. 211–216. doi: 10.1093/treephys/23.3.211

Jansson G. Gains from selecting Pinus sylvestris in southern Sweden for volume per hectare. Scand. J. For. Res. 2007. Vol. 22, no. 3. P. 185–192. doi: 10.1080/02827580701330894

Jansson G., Hansen J. K., Haapanen M., Kvaalen H., Steffenrem A. The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland. Scand. J. For. Res. 2017. Vol. 32, no. 4. P. 273–286. doi: 10.1080/02827581.2016.1242770

Keinonen‐Mettälä K., Jalonen P., Eurola P., von Arnold S., von Weissenberg K. Somatic embryogenesis of Pinus sylvestris. Scand. J. For. Res. 1996. Vol. 11, no. 1–4. P. 242–250. doi: 10.1080/02827589609382933

Klimaszewska K., Smith D. R. Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiologia Plantarum. 1997. Vol. 100. P. 947–957. doi: 10.1111/j.1399-3054.1997.tb00022.x

Krakau U. K., Liesebach M., Aronen T., Lelu-Walter M. A., Schneck V. Forest tree breeding in Europe: Current State-of-the-Art and Perspectives. Dordrecht: Springer, 2013. P. 267–323. doi: 10.1007/978‑94‑007‑6146‑9_6

Kvaalen H. Bruk av foredla plantemateriale. God økonomi for skogeigaren og samfunnet. Stiftelsen det norske Skogfrøverk. Artikler skrevet i anledning Skogfrøverkets “Strategi for skogplanteforedling 2010–2040” [Improved forest reproductive materials. Good economy for forest owner and society.] Norwegian, The Norwegian Forest Seed Center. Append. to proposed “Strategy for tree breeding 2010–2040. 2010. P. 16–18.

Lambardi M., Ozudogru E. A., Benelli C. Plant cryopreservation:

a practical guide. York: Springer, 2008. P. 177–210. doi: 10.1007/978‑0‑387‑72276‑4_9

Lamhamedi M. S., Chamberland H., Bernier P., Tremblay F. M. Clonal variation in morphology, growth, physiology, anatomy and ultrastructure of container-grown white spruce somatic plants. Tree Physiology. 2000. Vol. 20. P. 869–880.

Latutrie M., Aronen T. Long-term cryopreservation of embryogenic Pinus sylvestris cultures. Scand. J. For. Res. 2013. Vol. 28, no. 2. P. 103–109. doi: 10.1080/02827581.2012.701325

Lelu M.‐A., Bastien C., Drugeault A., Gouez M.‐L., Klimaszewska K. Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulator. Physiologia Plantarum. 1999. Vol. 105, no. 4. P. 719–728. doi: 10.1034/j.1399-3054.1999.105417.x

Lelu-Walter M. A., Bernier-Cardou M., Klimaszewska K. Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. PCTOC. 2008. Vol. 92, no. 1. P. 31–45. doi: 10.1007/s11240‑007‑9300‑x

Lelu-Walter M.‑A., Klimaszewska K., Miguel C., Aronen T., Hargreaves C., Teyssier C. Somatic embryogenesis: fundamental aspects and applications. Cham: Springer, 2016. P. 319–365. doi: 10.1007/978‑3‑319‑33705‑0_19

Lineros Y., Balocchi C., Muñoz X., Sánchez M., Ríos D. Cryopreservation of Pinus radiata embryogenic tissue: effects of cryoprotective pretreatments on maturation ability. PCTOC. 2018. Vol. 135, no. 2. P. 357–366. doi: 10.1007/s11240‑018‑1469‑7

Litvay J. D., Verma D. C., Johnson M. A. Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Reports. 1985. Vol. 4, no. 6. P. 325–328. doi: 10.1007/BF00269890

Marum L., Rocheta M., Maroco J., Oliveira M. M., Miguel C. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Reports. 2009. Vol. 28, no. 4. P. 673–682. doi: 10.1007/s00299‑008‑0668‑9

Montalbán I. A., García-Mendiguren O., Goicoa T., Ugarte M. D., Moncaleán P. Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiate. New Forests. 2015. Vol. 6, no. 2. doi: 10.1007/s11056‑014‑9457‑1

Montalbán I. A., Garcia-Mendiguren O., Moncaleán P. In vitro embryogenesis in higher plants. Methods in molecular biology. Vol. 1359. New York: Springer, 2016. P. 405–415. doi: 10.1007/978‑1‑4939‑3061‑6_21

Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 1962. Vol. 15, no. 3. P. 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Niemi K., Häggman H. Pisolithus tinctorius promotes germination and forms mycorrhizal structures in Scots pine somatic embryos in vitro. Mycorrhiza. 2002. Vol. 12, no. 5. P. 263–267. doi: 10.1007/s00572‑002‑0181‑x

Niemi K., Krajnakova J., Häggman H. Interaction between embryogenic cultures of Scots pine and ectomycorrhizal fungi. Mycorrhiza. 1998. Vol. 8, no. 2. P. 101–107. doi: 10.1007/s005720050219

Niskanen A.‑M., Lu J., Seitz S., Keinonen K., Von Weissenberg K., Pappinen A. Effect of parent genotype on somatic embryogenesis in Scots pine (Pinus sylvestris). Tree Physiology. 2004. Vol. 24, no. 11. P. 1259–1265. doi: 10.1093/treephys/24.11.12592004

O’Brien I. E. W., Smith D. R., Gardner R. C., Murray B. G. Flow cytometric determination of genome size in Pinus. Plant Science. 1996. Vol. 115, no. 1. P. 91–99. doi: 10.1016/0168-9452(96)04356-7

Park Y. S. Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann. For. Sci. 2002. Vol. 59, no. 5–6. P. 651–656. doi: 10.1051/forest:2002051

Park Y. S., Lelu-Walter M. A., Harvengt L., Trontin J. F., MacEacheron I., Klimaszewska K., Bonga J. M. Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. PCTOC. 2006. Vol. 86, no. 1. P. 87–101. doi: 10.1007/s11240‑006‑9101‑7

Park Y.‑S., Beaulieu J., Bousquet J. Vegetative propagation of forest trees. Seoul, Korea: National Institute of Forest Science (NiFos), 2016. P. 302–322.

Pereira C., Montalbán I. A., García-Mendiguren O., Goicoa T., Ugarte M. D., Correia S., Canhoto J. M., Moncaleán P. Pinus halepensis somatic embryogenesis is affected by the physical and chemical conditions at the initial stages of the process. J. For. Res. 2016. Vol. 21, no. 3. P. 143–150. doi: 10.1007/s10310‑016‑0524‑7

Rai M. K., Shekhawat N. S. H., Gupta A. K., Phulwaria M., Ram K., Jaiswal U. The role of abscisic acid in plant tissue culture: a review of recent progress. PCTOC. 2011. Vol. 106, no. 2. P. 179–190. doi: 10.1007/s11240‑011‑9923‑9

Review of the Swedish tree breeding programme. Ed. O. Rosvall. Skogforsk, 2011. 88 p.

Sarmast M. K. Genetic transformation and somaclonal variation in conifers. Plant Biotechnology Reports. 2016. Vol. 10, no. 6. P. 309–325. doi: 10.1007/s11816‑016‑0416‑5

Simonsen R., Rosvall O., Gong P., Wibe S. Profitability of measures to increase forest growth. For. Pol. Econ. 2010. Vol. 12, no. 6. P. 473–482. doi: 10.1016/j.forpol.2010.03.002

Thompson D. Challenges for the large-scale propagation of forest trees by somatic embryogenesis – a review. Proceed. of the Third Int. Conf. of the IUFRO Unit 2.09.02 on Woody Plant Production Integrating Genetic and Vegetative Propagation Technology (Vitoria-Gasteiz, Spain, September 18–12, 2014). 2014. P. 81–91.




DOI: http://dx.doi.org/10.17076/eb1118

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019