Влияние постоянной темноты, мелатонина и его антагониста лузиндола на содержание ретинола и токоферола у крыс

Татьяна Николаевна Ильина, Ирина Валерьевна Баишникова, Евгений Александрович Хижкин, Tatyana Ilyina, Irina Baishnikova, Evgeny Khizhkin

Аннотация


Постоянная темнота вызывает стимуляцию секреции эпифизарного гормона мелатонина. В измененных световых условиях интенсивность синтеза мелатонина, обладающего сильным антиоксидантным эффектом, может значительно меняться. При нахождении длительное время в полной темноте проявляется свободно текущий ритм секреции мелатонина, что оказывает влияние на состояние всей антиоксидантной системы. В работе исследовали влияние постоянной полной темноты, мелатонина и его рецепторного антагониста лузиндола на содержание ретинола и токоферола в тканях и органах взрослых самцов крыс. Крысы в возрасте 7 мес. были поделены на две группы и в течение 14 дней содержались в условиях постоянной темноты или стандартного освещения (контроль). Животные каждой группы были разделены на три подгруппы – контрольную, получавшую мелатонин или лузиндол в дозе 0,22 мг/кг веса. Содержание ретинола и токоферола определяли методом ВЭЖХ. Результаты исследования показали, что пребывание в темноте практически не повлияло на содержание токоферола и ретинола в тканях и органах крыс, а наибольшие изменения содержания витаминов А и Е под влиянием всех изучаемых факторов наблюдались в печени и скелетной мышце. Исследования показали, что отношения ретинола и токоферола с мелатонином в большинстве случаев носили взаимокомпенсаторный характер, когда повышение содержания одного антиоксиданта индуцирует снижение другого, благодаря чему сохраняется динамическое равновесие антиоксидантной системы.

Ключевые слова


свет; антиоксиданты; витамины А и Е; циркадные ритмы, мелатонин, лузиндол.

Полный текст:

PDF

Литература


Донцов А. Е., Воспельникова Н. Д., Зак П. П., Островский М. А. Антигликирующее действие мелатонина // Докл. Акад. наук. 2017. Т. 475, № 5. С. 588–591.

Меньщикова Е. Б., Ланкин В. З., Зенков Н. К., Бондарь И. А., Круговых Н. Ф., Труфакин В. А. Окислительный стресс. Прооксиданты и антиоксиданты. / М. Фирма «Слово». 2006. 556 с.

Мичурина С. В., Шурлыгина А. В., Белкин А. Д., Вакулин Г.М., Вербицкая Л.В., Труфакин В.А. Изменения печени и некоторых органов иммунной системы животных в условиях круглосуточного освещения // Морфология. 2005. Т. 128, № 4. С. 65–68.

Чернышёва М. П., Романова И. В., Михрина А. Л. Влияние ретинола на взаимодействие белка PEPIOD 1, окситоцина и ГАМК в пренатальный период формирования циркадианного clock-механизма у крыс. // Ж. эвол. биохим. и физиол. 2012. Т. 4, № 5. С. 481–486.

Adamah-Biassi E. B., Zhang Y., Jung H., Vissapragada S., Miller R. J., Dubocovich M. L. Distribution of MT1 Melatonin Receptor Promoter-Driven RFP Expression in the Brains of BAC C3H/HeN Transgenic Mice // J. of Histochemistry & Cytochemistry. 2013. Vol. 62, N1. P. 70 –84. DOI: 10.1369/0022155413507453

Arasteh A., Aliyev A., Khamnei S., Delazar A., Mesgari M., Mehmannavaz Y. Investigation of the effects of the constant darkness and Light on blood serum cholesterol, insulin and glucose levels in healthy male rats // African J. of Biotechnology. 2010. Vol. 9, N 40. P. 6791–6796.

Becker-Andre M., Wiesenberg .I, Schaeren-Wiemers N., Andre E., Missbach M., Saurat J. H., Carlberg C. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily [published erratum appears in J Biol Chem. 1997. Vol. 272: 16707] J Biol Chem. 1994.269. P. 28531–28534.

Bedrosian T. A., Herring K. L., Walton J. C., Fonken L. K., Weil Z. M., Nelson R. J. Evidence for feedback control of melatonin pineal secretion. // Neuroscience Letters. 2013. Vol. 542. P. 123–125.

Behan W.M.H., McDonald M, Darlington L.G., Stone T.W. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl // British Journal of Pharmacology. 1999. Vol. 128. P. 1754–1760.

Budak A. V., Sushko B. S., Limansky Yu. P., Parkhomenko N. T. Effects of Melatonin and Antagonists of MT1 and MT2 Receptors on Somatic Pain Induced within the Fixed Circadian Rhythm // Neurophysiology. 2007. Vol. 39, N 3. P. 222-226.

Das A., McDowell M., Pava M. J., Smith J. A., Reiter R. J., Woodward J. J., Varma A. K.,. Ray S. K, Banik N. L. The inhibition of apoptosis by melatonin in VSC4.1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF-α toxicity involves membrane melatonin receptors // J Pineal Res. 2010. Vol. 48, N 2. P. 157–169. doi:10.1111/j.1600-079X.2009.00739.x.

Drazen D. L., Bilu D., Bilbo S. D., Nelson R. J. Melatonin enhancement of splenocyte proliferation is attenuated of luzindole, a melatonin receptor antagonist // Am. J. Physiol. Regulatory Integrative Comp. Physiol. 2001. Vol. 280. P.1476–1482.

Hunt A. E., Al-Ghoul W. M., Gillette M. U., Dubocovich M. L. Activation of MT 2 melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock // Am J Physiol Cell Physiol. 2001. Vol. 280. P. 110–118.

Lee C. C. Constant darkness is a mammalian biological signal // Cold Spring Harb Symp Quant Biol. 2007. Vol. 72. P. 287–291. doi: 10.1101/sqb.2007.72.051.

Masana M. I., Sumaya I. C., Becker-Andre M., Dubocovich M. L. Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORβ knockout // Am J Physiol Regul Integr Comp Physiol. 2007. Vol. 292. P2357–R2367.

Montilla P., Feijóo M., Muñoz M. C., Muñoz-Castañeda J. R., Bujalance I., Túnez I. Effect of melatonin on the oxidative stress in N1E-115 cells is not mediated by mt1 receptors // J. Phisiol. Biochem. 2003. Vol. 59, no 4. P. 263–268.

Pashalieva I., Stancheva E., Decheva L., Nyagolov Y., Negrev N. Experimental data about melatonin effects on platelet count and functional activity // Comptes rendus de l’Académie bulgare des Sciences. 2012. Vol. 65, no 6. P. 855–860.

Pieri C., Moroni F., Marra M., Marcheselli F, Recchioni R. Melatonin is an efficient antioxidant // Arch. Gerontol. Gerianr. 1995. Vol. 20. P 150 – 165.

Pitrosky B., Kirsch R., Malan A., Mocaer E., Pevet P. Organization of rat circadian rhythms during daily infusion of melatonin or S20098, a melatonin agonist // Am J Physiol Regul Integr Comp Physiol. 1999. Vol. 277. P. 812–828.

Reiter R . J. Melatonin: Lowering the High Price of Free Radicals // News of Phisiological Science. 2000. Vol. 15, 5. P. 246–250.

Reiter R. J., Tan D. X., Manchester L. C., Terron P. M., Flores L. J., Koppisepi S. Medical implication of melatonin: receptor-mediated and receptor-independent actions // Adv Med Sci. 2007. Vol. 52. P. 11–28.

Requintina P. J., Oxenkrug G. F. Effect of luzindole and other melatonin receptor antagonists on iron- and lipopolysaccharide-induced lipid peroxidation in vitro // Ann N Y Acad Sci. 2007. Vol. 1122. P. 289–94.

Rodriguez C., Mayo J. C., Sainz R. M., Antolı´n I., Herrera F., Martı´n V., Reiter R. J. Regulation of antioxidant enzymes: a significant role for melatonin // J. Pineal Res. 2004; Vol. 36. P. 1–9.

Rosen R. B., Hu Dan-Ning, Chen M., McCormick S . A., Walsh J., Roberts J. E. Effect of melatonin and its receptor antagonist on retinal pigment epithelian cells against hydrogen peroxide damage // Molecular Vision. 2012. Vol. 18. P. 1640–1648.

Ruby N. F., Joshi N., Heller H. G. Constant darkness restores entrainment to phase-delayed Siberian hamsters // Am. J. Phisiol. Regul. Integr. Comp. Phisiol. 2002. Vol. 283. P. 1314–1320.

von Gall C., Stehle J. H., Weaver D. R. Mammalian melatonin receptors: molecular biology and signal transduction // Cell Tissue Res. 2002. Vol. 309. P.151–162. DOI 10.1007/s00441-002-0581-4.

Yuksel S. Altered adrenomedullin levels of the rats exposed to constant darkness and light stress // Journal of Photochemistry and Photobiology. B: Biology. 2008. Vol. 91, P. 20–23.

Zhang J., Kaasik R., Blackburn M. R., Lee C. C. // Constant darkness is a circadian metabolic signal in mammals // Nature. 2006. Vol. 439. P. 340-343. doi:10.1038/nature04368.

References in English

Chernysheva M. P., Romanova I. V., Mikhrina A. L. Vliyanie retinola na vzaimodeistvie belka PEPIOD 1, oksitotsina i GAMK v prenatal’nyi period formirovaniya tsirkadiannogo clock-mekhanizma u krys [Effect of retinol on the interaction

of PERIOD 1 protein, oxytotsin and GAMK in the prenatal period of formation of circadian clock mechanism in rats]. Zhurn. evol. biokhim. i fisiol. [J. Evol. Biochem. Physiol.]. 2012. Vol. 4, no. 5. P. 481–486.

Dontsov A. E., Vospel’nikova N. D., Zak P. P., Ostrovskii M. A. Antiglikiruyushchee deistvie melatonina [Antiglycating effect of melatonin]. DAN [Proceed. RAS]. 2017. Vol. 475, no. 5. P. 588–591.

Men’shchikova E. B., Lankin V. Z., Zenkov N. K., Bondar’ I. A., Krugovykh N. F., Trufakin V. A. Okislitel’nyi stress. Prooksidanty i antioksidanty [Oxidative stress. Pro-oxidants and antioxidants]. Мoscow: Slovo, 2006. 556 p.

Michurina S. V., Shurlygina A. V., Belkin A. D., Vakulin G. M., Verbitskaya L. V., Trufakin V. A. Izmeneniya pecheni i nekotorykh organov immunnoi sistemy zhivotnykh v usloviyakh kruglosutochnogo osveshcheniya [Changes in the liver and some organs of the immune system of animals in conditions of round-the-clock lighting]. Morfologiya[Morphology]. 2005. Vol. 128, no. 4. P. 65–68.

Adamah-Biassi E. B., Zhang Y., Jung H., Vissapragada S., Miller R. J., Dubocovich M. L. Distribution of MT1 melatonin receptor promoter-driven RFP expression in the brains of BAC C3H/HeN transgenic mice. J. Histochem. Cytochem. 2013. Vol. 62, no. 1. P. 70–84. doi: 10.1369/0022155413507453

Arasteh A., Aliyev A., Khamnei S., Delazar A., Mesgari M., Mehmannavaz Y. Investigation of the effects of the constant darkness and Light on blood serum cholesterol, insulin and glucose levels in healthy male rats. Afr. J. Biotechnol. 2010. Vol. 9, no. 40. P. 6791–6796.

Becker-Andre M., Wiesenberg.I, Schaeren-Wiemers N., Andre E., Missbach M., Saurat J. H., Carlberg C. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J. Biol. Chem. 1994. Vol. 269. P. 28531–28534 [published erratum appears in J. Biol. Chem. 1997. Vol. 272.

P. 16707]

Bedrosian T. A., Herring K. L., Walton J. C., Fonken L. K., Weil Z. M., Nelson R. J. Evidence for feedback control of melatonin pineal secretion. Neurosci. Lett. 2013. Vol. 542. P. 123–125.

Behan W. M. H., McDonald M., Darlington L. G., Stone T. W. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Brit. J. Pharmacol. 1999. Vol. 128. P. 1754–1760.

Das A., McDowell M., Pava M. J., Smith J. A., Reiter R. J., Woodward J. J., Varma A. K., Ray S. K., Banik N. L. The inhibition of apoptosis by melatonin in VSC4.1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF-αtoxicity involves membrane melatonin receptors. J. Pineal Res. 2010. Vol. 48, no. 2. P. 157–169. doi: 10.1111/j.1600-079X.

00739.x

Drazen D. L., Bilu D., Bilbo S. D., Nelson R. J. Melatonin enhancement of splenocyte proliferation is attenuated of luzindole, a melatonin receptor antagonist. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001. Vol. 280. P. 1476–1482.

Hunt A. E., Al-Ghoul W. M., Gillette M. U., Dubocovich M. L. Activation of MT 2 melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am. J. Physiol. Cell Physiol. 2001. Vol. 280. P. 110–118.

Lee C. C. Constant darkness is a mammalian biological signal. Cold Spring Harb. Symp. Quant. Biol. 2007. Vol. 72. P. 287–291. doi: 10.1101/sqb.2007.72.051

Masana M. I., Sumaya I. C., Becker-Andre M., Dubocovich M. L. Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORβ knockout. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007. Vol. 292. P. 2357–2367.

Montilla P., Feijóo M., Muñoz M. C., Muñoz-Castañeda J. R., Bujalance I., Túnez I. Effect of melatonin on the oxidative stress in N1E-115 cells is not mediated by mt1 receptors. J. Phisiol. Biochem. 2003. Vol. 59, no. 4. P. 263–268.

Pashalieva I., Stancheva E., Decheva L., Nyagolov Y., Negrev N. Experimental data about melatonin effects on platelet count and functional activity. Comptes rendus de l’Académie Bulgare des Sciences. 2012. Vol. 65, no. 6. P. 855–860.

Pieri C., Moroni F., Marra M., Marcheselli F., Recchioni R. Melatonin is an efficient antioxidant. Arch. Gerontol. Geriatr. 1995. Vol. 20. P. 150–165.

Pitrosky B., Kirsch R., Malan A., Mocaer E., Pevet P. Organization of rat circadian rhythms during daily infusion of melatonin or S20098, a melatonin agonist. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1999. Vol. 277. P. 812–828.

Reiter R. J. Melatonin: Lowering the high price of free radicals. News Phisiol. Sci. 2000. Vol. 15, no. 5. P. 246–250.

Reiter R. J., Tan D. X., Manchester L. C., Terron P. M., Flores L. J., Koppisepi S. Medical implication of melatonin: receptor-mediated and receptor-independent actions. Adv. Med. Sci. 2007. Vol. 52. P. 11–28.

Requintina P. J., Oxenkrug G. F. Effect of luzindole and other melatonin receptor antagonists on iron- and lipopolysaccharide-

induced lipid peroxidation in vitro. Ann. NY Acad. Sci. 2007. Vol. 1122. P. 289–294.

Rodriguez C., Mayo J. C., Sainz R. M., Antolin I., Herrera F., Martin V., Reiter R. J. Regulation of antioxidant enzymes: a significant role for melatonin. J. Pineal Res. 2004. Vol. 36. P. 1–9.

Rosen R. B., Hu D.‑N., Chen M., McCormick S. A., Walsh J., Roberts J. E. Effect of melatonin and its receptor antagonist on retinal pigment epithelian cells against hydrogen peroxide damage. Mol. Vis. 2012. Vol. 18. P. 1640–1648.

Ruby N. F., Joshi N., Heller H. G. Constant darkness restores entrainment to phase-delayed Siberian hamsters. Am. J. Phisiol. Regul. Integr. Comp. Phisiol. 2002. Vol. 283. P. 1314–1320.

von Gall C., Stehle J. H., Weaver D. R. Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res. 2002. Vol. 309. P. 151–162. doi: 10.1007/s00441‑002‑0581‑4

Yuksel S. Altered adrenomedullin levels of the rats exposed to constant darkness and light stress. J. Photochem. Photobiol. B Biol. 2008. Vol. 91. P. 20–23.

Zhang J., Kaasik R., Blackburn M. R., Lee C. C. Constant darkness is a circadian metabolic signal in mammals. Nature. 2006. Vol. 439. P. 340–343. doi: 10.1038/nature04368




DOI: http://dx.doi.org/10.17076/eb1037

Ссылки

  • На текущий момент ссылки отсутствуют.


© Труды КарНЦ РАН, 2014-2019